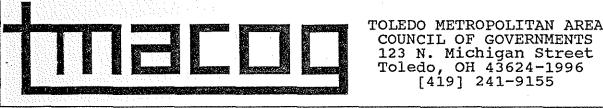
MAUMEE RIVER BASIN AREA OF CONCERN REMEDIAL ACTION PLAN


Volume 3 Water Quality Problem Matrix

Toledo Metropolitan Area Council of Governments

123 N. Michigan Ave Toledo, OH 43624-1996 [419] 241-9155

July, 1989

Scocument was prepared by the Toledo Metropolitan Area Council of Governments with funding from member local governments and financed in part by grants from the U.S. Environmental Protection Agency, through the Ohio Environmental Protection Agency.

MAUMEE RIVER BASIN AREA OF CONCERN REMEDIAL ACTION PLAN

Volume 3 Water Quality Problem Matrix

Contents

INTRODUCTION

i.

ii.

Overview of the Water Quality Problem Matrix Map of the RAP watersheds

DISCUSSION OF CRITERIA FOR WATER QUALITY PROBLEM SEVERITY CLASSIFICATIONS

Descriptions of how water quality ratings were arrived at for each of the watersheds

iii. WATER QUALITY PROBLEM MATRIX

A listing of all the watersheds in the RAP Area, giving the severity of the water quality impact from each of thirteen categorical types of pollutants

iv. WATER QUALITY IMPACT MAPS

Maps which show the impact severity ratings for each of the watersheds

RAP AREA WATER QUALITY PROBLEM MATRIX

Introduction

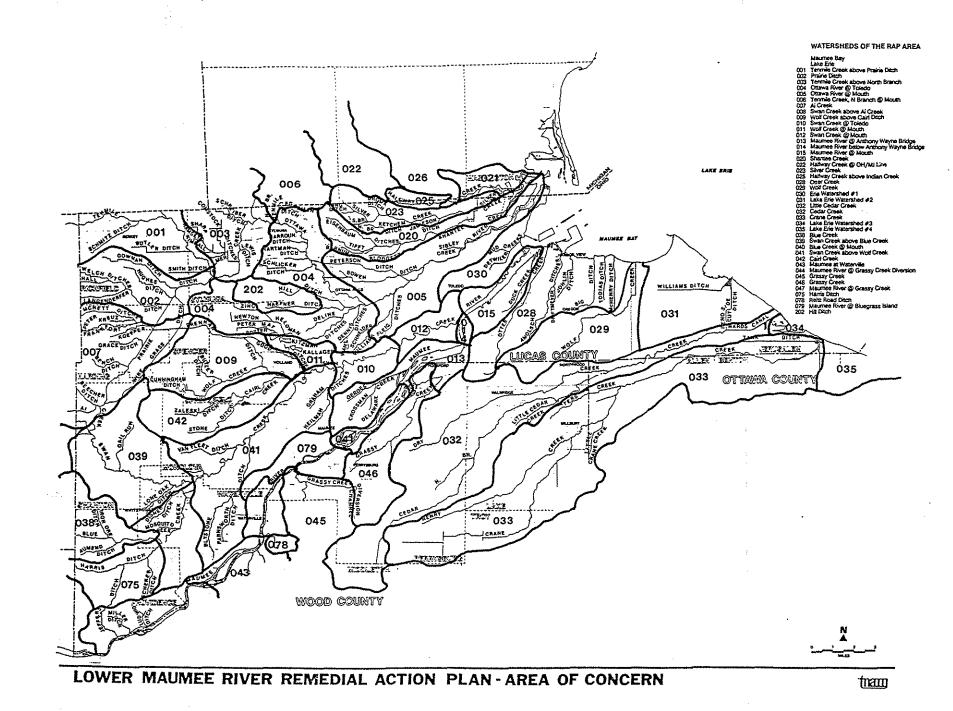
This report, the Water Quality Problem Matrix, is the third volume of the Lower Maumee Basin Remedial Action Plan. The previous volumes dealt with identifying and detailing the water quality problems of the Lower Maumee Basin. Volume 1, the Investigation Report, is the documentation that identifies the environmental problems and the water and related uses that are impaired as a result of the problems. It also identifies the known sources of the pollutants. This volume includes a glossery of water quality terminology, acronyms, and abbreviations. Volume 2, the Investigation Report Appendices contains the lengthier tables of information collected in the process of writing the Investigation Report, and the draft text of Ohio EPA's Biological Water Quality Report (BWQR) for the Lower Maumee Basin streams.

RAPs are required in those Areas of Concern (AOC) as identified by the Water Quality Board of the International Joint Commission. Overall, there are 42 identified AOCs for the Great Lakes area. The RAPs are to become a part of the Great Lakes Water Quality Agreement of 1987 between the United States and Canada. This Agreement is a commitment to restore the water quality and the beneficial uses of the waters.

The AOC is an area of water impact. In some cases, however, the sources of these impacts are outside of the Lower Maumee River Basin's boundaries. This is particularly true of the agricultural sources. Therefore, implementation of the RAP must not be limited to the AOC's boundaries, if significant water quality improvements are to be made.

The Water Quality Problem Matrix assesses the impact of the problems identified in the Investigation Report on each stream in the AOC. The streams are divided into sub-drainage basins, or watersheds. The watersheds are listed alphabetically in the Matrix. Each watershed is given a rating for the severity of the impact from each of the thirteen water quality problem areas identified.

More than a hundred persons have had input into the preparation of this first phase work. The Remedial Action Plan Advisory Committee, which has over a hundred members, subdivided itself into seven subcommittees, bringing other persons into the process. These subcommittees included: Water Quality and Water Uses, Dredge Disposal, Agricultural Runoff, Home Sewage Disposal, Landfills and Dumps, Public and Industrial Dischargers, and Fish and Wildlife. The thirteen water quality problem areas were assigned to subcommittees. These committees met and decided on criteria for impact ratings. A listing of what committee dealt with which issue is included at the front of the Matrix. When the subcommittees had finished their work, the full Advisory Committee met to review the ratings. This group discussed the ratings, made some changes, and then approved the Matrix.


There are three sections to this report:

- 1. The Matrix Documentation. This section discusses how the committees addressed the water quality problems, what criteria were used for determining ratings, and why.
- 2. The Area of Concern Watershed Map. A map showing the watersheds used.
- 3. The Matrix. The listing of each watershed and its impact rating for each of the thirteen water quality problem areas.

The Toledo Metropolitan Area Council of Governments (TMACOG) is participating in a joint venture with Ohio Environmental Protection Agency (Ohio EPA) to prepare the RAP. TMACOG has three primary tasks: preparation of the *Investigation Report*, preparation of recommendations on how to solve the problems, and conducting a program of extensive public involvement in the RAP development so as to have substantial agreement among the public and private sectors for the actions adopted.

This document completes the investigation phase of the RAP process. Using the *Investigation Report* and the Matrix, the RAP subcommittees will prepare recommendations on solutions to the water quality problems. Under the guidance of the Steering Committee, TMACOG staff will merge these recommendations into a cohesive document. This *Recommendations Report* will be reviewed by the full Advisory Committee. When a final version is ready, it will be submitted to Ohio EPA, which will use it to produce the *Remedial Action Plan*. This final Plan will then go to US EPA and the International Joint Commission (IJC).

For information on how to participate in the Remedial Action Plan process, or to obtain a copy of the *Investigation Report*, please contact TMACOG.

· - **`**

RAP AREA WATER QUALITY PROBLEM MATRIX

Discussion of Criteria for Water Quality Problem Severity Classifications

RATING SYSTEM

The rating system used classifies the effects of each of the identified water quality problems as:

Н	High impact
M	Medium impact
L	Low impact
N	Not applicable to this watershed/None
U	Unknown
US	Unknown, but suspected problem
S	Suspected problem; but no data
HS	Suspected high impact
MS	Suspected medium impact
LS	Suspected low impact

These rating are based on the best available information, as identified by the Maumee River Basin Area of Concern Remedial Action Plan, Volume 1: Investigation Report (TMACOG, 1988).

POTWS

The following is a list of POTWs by watershed, and the severity rating assigned. These ratings take into account the quality of the plant effluent, and the quantity of effluent relative to the size of the receiving stream. The Whitehouse is not included here because it is in the process of being abandoned in favor of connecting to the Lucas County system.

A summary of POTW permit violations for 1987 and the first half of 1988 is given below:

POTW	BOD	CI	Fecal	Phen.	Oil	P	pН	SS	Hg	Total
DuPont Road	0	1	2	2	0	1	Ö	1	0	7
Haskins	2	0	1	0	0	0	1	1	0	5
Maumee River	0	1	2	0	0	0	0	0	0	3
Perrysburg	6	4	10	0	1	19	0	13	0	53
South Shore Park	15	5	9	0	0	0	0	15	0	44
Toledo	3	1	10	1	0	15	1	10	1	42

The rationale used in assigning these impact ratings is as follows:

In most watersheds, there are no POTW discharges, so the rating is "N".

- The Toledo Bay View plant is a large facility with a significant number of NPDES discharge permit violations. Its impact is rated "H".
- The Oregon South Shore Park and Dupont Road treatment plants discharge to the lake. The DuPont Road plant is under capacity, and had a relatively small number of permit violations; its rating is "M". The South Shore Park plant, however, has severe problems from extraneous water entering the sewers. This plant has many permit violations, and its rating is "H". Together, their impact is rated "H".
- The Maumee River WWTP had few permit violations, and discharges to a sizable stream (the river). Its impact rating is "L".
- The Perrysburg plant is not a large facility, but it has serious problems, and more permit violations than any other POTW. Its impact is rated "H".

The Haskins plant has a small number of permit violations, but it discharges to a roadside ditch. However, its effect on the Maumee River itself is low. For this reason, its impact is rated "L".

The impact ratings for POTWs are summarized below:

Watershed	POTW Impact	POTW(s)
015	Н	Toledo Bay View
028	M	DuPont Road WWTP,
028	H	Oregon South Shore Park WWTP
043	L L	Haskins
044	L	Maumee River WWTP
079	Н	Perrysburg WWTP

PACKAGE PLANTS

In most cases, the only information regarding package plants is their location and size. A listing of NPDES Permit Violations (*RAP Investigation Report*, Appendix I), however, indicates that even package plants run by trained operators do not discharge very high-quality effluent. Furthermore, even well-run package plants are vulnerable to upsets, and can turn septic in a matter of hours. For this reason, package plants impacts are rated either "N" for None, or "H" for High.

INDUSTRIAL

The listing of NPDES Permit Violations (*RAP Investigation Report*, Appendix I), in many cases agrees with the list of "Problem Dischargers" developed for the *RAP Investigation Report*. The classification of what is industrial and non-industrial is based on Ohio EPA's system. If the NPDES Permit number starts with "2I", it is Industrial. If it starts with "2P", it is not. By this classification, 186 of the 627 NPDES violations, or 30%, were from industrial dischargers.

Of the 186 industrial permit violations listed, 76 of them are from three "Problem" dischargers (Sun Oil 2IG00003, General Mills 2IH00093, and King Road Landfill 2IN00079), for an average of 25 violations. The other five "Problem" dischargers do not show any permit violations at all (Conrail 2IT00015, Conrail 2IT00007, Doehler-Jarvis 2IC00021, LOF 2IN00030, and LOF 2IN00020).

Fourteen non-problem dischargers account for the remaining 110 violations, for an average of 8 apiece. Of these, the Toledo Edison ACME plant (2IB00001) shows 26 violations (mostly suspended solids); DuPont Paint (2IF00016) had 9 (all temperature); Diversitech (2IQ00012) had 9 (mostly oil & grease); Chessie System (CSX Presque Isle, 2IT00013) had 10 (Oil & grease, pH, SS); and the Bowling Green water plant (2IW00010) had 19 (all SS). Based on this information, Diversitech was added to the list of "Problem" Dischargers.

The following criteria were used for defining L/M/H impact for Industrial Dischargers:

- Watersheds which have no industrial dischargers are rated "N".
- Watersheds that have one or more "Problem" industrial dischargers are rated "H".
- A discharger that has more than 8 violations (the average number for non-"Problem" dischargers), is rated "M".
- A discharger with 8 or fewer violations is rated "L".
- Where a watershed has more than one industrial discharge, the most severe impact rating applies.

A tally of NPDES permit violations is shown below.

TALLY OF INDUSTRIAL NPDES PERMIT VIOLATIONS

NPDES Discharger	NPDES #	# Violations	<u>"Problem"?</u>	Impact
Bowling Green WTP	2IW00010	19	No	М
Conrail Emerald Ave.	2lT00015	0	Yes	H
Conrail Stanley Yard	2IT00007	0	Yes	Н
CSX Presque Isle	2IT00013	10	No	М
CSX Walbridge	2IT00002	4	No	с. Г .,
Diversitech	2IQ00012	9	Yes	Н
Doehler-Jarvis	2IC00021	0	Yes	Н
DuPont Formaldehyde	2 F00017	1	No	L
DuPont Paint	2lF00016	9	No	М
Envirosafe (Fondessy)	2IN00013	5	No	L
France Stone	2IJ00039	1	No	L
General Mills	2IH00093	10	Yes	Н
King Road Landfill	2IN00079	17	Yes	Н
Liquid Carbonic	2IN00069	5	No	L
LOF #4 & #8	21N00020	0	Yes	Н
LOF #6	21N00030	0	Yes	Н
Reichert Stamping	2IS00008	3	No	L
Standard Oil Refinery	21G00007	7	Ņo	ΓL.
Stoneco	2IJ00052	1	No	L
Sun Oil Refinery	21G00003	24	Yes	Н
Teledyne	21000001	3	No	L
Toledo Coke	2ID00011	3	No set set	E L CARTA
Toledo Edison ACME	2IB00001	26	No	M
Toledo Edison Bayshore	21B00000	4	No	L

All other industrial NPDES dischargers reported no permit violations in this period, and are rated as having a low (L) impact on their watersheds.

It may be noted that five of the "Problem" dischargers reported no permit violations. The Public and Industrial Wastewater Subcommittee offers the following notes to account for this:

Conrail, Emerald Avenue (2IT00015)

No explanation for why this discharger does not show violations in its Monthly Operating Reports (MORs). The receiving stream is severely impacted by oil discharge from this facility. Ohio EPA plans to begin enforcement action.

Conrail, Stanley Yard (2IT00007)

The problem at this site is more old spills than present discharges. Again, no explanation why this discharger did not show any violations. The *Investigation Report* (page 80) cites a major oil spill in March, 1988. A spill would not necessarily show up on the MORs.

Doehler-Jarvis (2lC00021)

The suspected problem from this discharger is a *periodic* spill of soluble oils. Being intermittent, it would not necessarily show up on the MORs submitted to Ohio EPA. Periodic discharges to the stream have been documented, and while Doehler-Jarvis is the *suspected* source, the discharge has been traced back to this facility on only one occasion.

LOF, Plants #4 & 8, East Broadway (2IN00020)

Otter Creek used to flow *under* the landfill at this site, and leaching into the creek was a problem. Otter Creek has now been diverted to flow *around* the landfill instead. At present, there is still *some* discharge. The leachate will be collected and pumped to the City of Toledo's sanitary sewer system.

LOF, Plant #6, Rossford (2IN00030)

The main pollutant cited from this discharger was arsenic. No violations were reported, however, because arsenic was not included in the permit (2IN00030*ED). This permit is in the process of being redrafted. Ohio EPA intends to include arsenic on the new permit.

LOF has installed a leachate collection system here, and eliminated the arsenic discharge. The leachate now goes to a treatment lagoon.

LOF has made substantial progress toward cleaning up both its facilities in Rossford/East Toledo. It is anticipated that the improvements made will solved the problem and remove LOF from the "Problem" discharger list. At present, however, new data is not yet available to document this.

<u>CSOs</u>

Watersheds which receive no discharges from CSOs are all rated "N".

TESD data for 1981-1986 indicate the following tallies of fecal coliform counts in excess of 2000/100 ml:

Stream	Fecal Coliform Counts Over 2000	Total Number of Samples	Percent Over 2000/100 ml
Maumee River	79	399	20%
Ottawa River	162	436	37%
Swan Creek	102	224	46%

These numbers show a more severe effect on Swan Creek and the Ottawa River. There are no POTWs discharging to the Ottawa River, and there are few package plants and septic systems in the reach of stream monitored. The most severe bacterial counts were found between mile points 3.1 (Suder Ave.) and 8.9 (Monroe St.), which is in the CSO area.

On Swan Creek, conditions are similar. There are many package plants discharging to Swan Creek, but mostly upstream of the TESD sampling sites. The Whitehouse WWTP was also discharging to a tributary of Swan Creek during this period, but again, far upstream of the TESD sites. The severe bacterial counts were found between mile points 0.6 (St. Clair) and 5 (Detroit Ave.), which is the CSO area.

The Maumee River watersheds with CSOs show fecal coliform violations, but at a lower frequency. Also, the Maumee River CSO area receives effluent from the Toledo and Perrysburg WWTPs, both of which had fecal coliform effluent violations (*RAP Investigation Report*, Appendix I). In addition, water from Swan Creek joins the Maumee in this reach. The POTWs and the two tributaries are sources of fecal coliform besides the local CSOs.

Swan Creek and Ottawa River watersheds with CSOs are both rated "H". The effect of CSOs on Swan Creek due to the Whitehouse bypasses is rated "H". Two segments of Swan Creek are rated "M". Watershed 041 receives the impact of the Whitehouse CSOs at its upstream end, but the rest of the watershed has none. In 010 in Toledo, the upper end of the watershed is above the CSOs, but the lower end has several. Maumee River CSO watersheds are rated "M", not because CSOs are not a problem, but because their effect is less severe due to dilution.

URBAN RUNOFF

No water quality monitoring has ever been performed to document the effects of urban runoff in the RAP Area. Not having any better information, it is assumed that the water quality effects of urban runoff depend only on the degree of urbanization of the watershed.

The LRIS land use database classifies land use into a number of different land use types, each assigned a numerical code. Those classified as "urban land uses" are listed below:

LRIS Watershed Land Use Code		Land Use
8		Commercial-Industrial (undifferentiated)
9		Mixed Urban
10		Residential (undifferentiated)
11	•	Residential, single family
12		Residential, multiple family
13		Mobile homes
14		Commercial & Services
15	1	Industrial, light to heavy
16		Institutional
19		Other Urban
72		Construction Activity
81		Improved Roads
82		Unimproved Roads
83		Railroads
84		Airport
85		Utilities
86		Shipping Ports
87		Utility & Rall, undifferentiated, not included in 83 or 85
88		Transportation (undifferentiated)

The table on the following page gives the total acreages in urban land uses for each watershed. At the right hand side of the table, the percent of urban land uses are given, and the impact ranking of L/M/H. Severity is rated "H" for highly urbanized watersheds (over 50%), "M" for moderately-urbanized watersheds (31%-50%), and otherwise "L".

This land use data was collected in 1975. It is the most recent presently available, but there have been some significant land use changes since then. The major growth areas have been:

003	Sylvania & Sylvania Twp.
009	Springfield Twp.
041	Maumee & Monclova Twp.
042	Springfield & Swanton Twps.
046	Perrysburg & Perrysburg Twp.
079	Perrysburg & Perrysburg Twp.

These watersheds are rated "MS" for suspected medium impact from urban runoff. Exception: watershed 079 is rated "M" based on 1975 land use.

WATER SHED CO). ALL URB SUM	AN AREAS PERCENT	===== RANK	NON-RESIDENTIAL SUM ACRES	URBAN	RATING
	Urban	Urban		Non-Res. Urban	Non-Res. Urban	
001 L 002 L 003 L 004 L 005 L 006 L 007 L	331.3 518.2 2052.8 7781.6 10075.1 314.3 866.5	3.8% 5.9% 27.4% 47.0% 74.4% 47.4% 6.4%	LLMHML	331.3 518.2 2052.8 7781.6 10075.1 314.3 866.5	3.8% 5.9% 27.4% 47.0% 74.4% 47.4% 6.4%	LLMHM
008 L 009 L 010 L 011 L 012 L 013 L 013 W	17 1682.1 3364.1 586.2 2557.1 4332.6 744.1	9.1% 19.5% 55.1% 35.6% 88.5%	L H M H	17.0 1682.1 3364.1 586.2 2557.1	9.1% 19.5% 55.1% 35.6% 88.5%	L L H H
013 Al 014 L 015 L 020 L 021 L 022 L 023 L 025 L 028 L		67.3% 50.0% 60.1% 78.0% 44.4% 96.7% 73.1% 62.5%	HHHHMHHH	.0 59.5 2727.0 4859.3 34.0 115.0 3398.1 509.7	.0% 50.0% 60.1% 78.0% 44.4% 96.7% 73.1% 62.5%	
028 W 028 Al 029 L	188.3 L 4486.9 858.1	39.6%	M	.0	. 0%	L
029 W 029 Al 030 L 031 L 032 L	3551 994 322.9	12.3% 74.0% 7.4%	L H L	.0 3551.0 994.0	.0% 74.0% 7.4%	H
032 W 032 Al 033 L	3960.8 L 4283.7 102	13.6%	L	.0	.0%	L
033 W 033 AI 034 L 035 L	1625.5	8.1% 1.2%	L.	.0.8.5	.0% 1.2%	L
035 0 035 Al 038 L 039 L 040 L 041 L 042 L 043 L	74.9 458.8 951.5 603.3 1231.8 1146.9 263.4 975.4	2.3% 8.1% 8.8% 10.1% 8.8% 16.0%	المحمد المحمد الم	.0 458.8 951.5 603.3 1231.8 1146.9	.0% 8.1% 8.8% 10.1% 8.8% 16.0%	
043 W 043 Al 044 L	L 1238.8 560.7	10.8%	L	.0	. 0%	L
044 W 044 AL 045 W 046 W 047 L	102.7	22.5% 6.7% 29.8%	L L L	.0 1042.8 2720.6	.0% 6.7% 29.8%	L L L
047 W 047 AL 075 L	L 1356.1 390.8	37.3%	М	0	.0%	L
075 W 075 AL 078 W 079 L	17.2 756.2	5.5% 2.6%	L L	17.2 ⁰	.0% 2.6%	L.
079 W 079 Al <u>202 L</u> Totals	598.9 L 1355.1 1070 77,551	32.1% 45.8% 25.0%	M M	.0 1070.0 55,645	.0% 45.8%	L <u>M</u>

AGRICULTURAL RUNOFF

Determination of the level of agricultural runoff impacts was based on watershed rankings in the State of Ohio Phosphonus Reduction Strategy for Lake Erie and the Ohio EPA's Ohio Nonpoint Source Assessment. Watersheds with a priority 1 ranking in the Reduction Strategy or a nonpoint source impaired Assessment ranking were rated H. Watersheds ranked nonpoint source impacted in the Assessment were rated M. In those cases where watersheds were ranked differently in the two reports, the higher impact rating was used. The remaining watersheds were rated L.

DUMPS, LANDFILLS, and PITS, PONDS, and LAGOONS

Watersheds which have no identified landfills dumps, pits, ponds or lagoons as displayed in the *Investigation Report* are rated None (N).

Watersheds which have an identified landfill, dump, pit, pond or lagoon as displayed in the *Investigation Report*, but have no known discharge, are rated Medium (M).

Watersheds which have an identified landfill, dump, pit, pond or lagoon as displayed in the *Investigation Report*, and have a known discharge, are rated High (H).

LEAKING UNDERGROUND STORAGE TANKS (LUST)

The best data available for underground tanks at this time merely indicates the number known to exist in each county. There does not yet exist an inventory that gives their locations, ages, and materials, nor whether the tanks are leaking. What the data *does* indicate is that there tend to be higher concentrations of underground tanks in urban areas than in rural areas. For this reason, the impact of underground tanks was rated using the same *degree of urbanization* criteria applied to urban runoff. Watersheds are rated "HS" for highly urbanized watersheds (over 50%), "MS" for moderately-urbanized watersheds (31%-50%), and otherwise "LS".

DREDGE DISPOSAL

The major effects of open lake disposal of dredged materials in the Area of Concern are limited to the Lake Erie and Maumee Bay since the current and proposed open lake disposal sites are located there. Therefore, Lake Erie and Maumee Bay were rated H. Those segments of the Maumee River that make up the shipping channel were rated M. All remaining watersheds were rated N.

HOME SEWAGE DISPOSAL

Watersheds which are in urbanized areas with available sanitary sewers as displayed in the Investigation Report are rated None (N). The Home Sewage Disposal Subcommittee recognizes that some isolated home sewage systems do exist in sewered areas. These, however, are few enough not to have a significant impact on water quality on the watershed level.

Watersheds which have identified on-site systems, but are not identified as problem areas by the County Health Departments as described in the Investigation Report, are rated Medium (M).

Watersheds which have identified on-site systems, and are identified as problem areas by the County Health Departments as displayed in the Investigation Report, are rated High (H).

ATMOSPHERIC DEPOSITION

While no specific information exists for the effects of atmospheric deposition of pollutants in the RAP Area, there is documentation of this source causing water quality problems in Michigan, and other parts of Ohio. A acid rain does not show any harmful effects to streams of the RAP Area because of the buffering capacity of the native limestone. In fact, most streams tend to be alkaline (pH around 7.7). Air quality data, noted in the *Investigation Report*, give reason to suspect potential problems from deposition. All watersheds are rated "US" for "Unknown, but suspected problem".

WTP SLUDGE

Water Treatment Plant sludge deposits are a problem in only a few specific watersheds, and these cases are welldocumented. For all other watersheds, the rating is "L".

CONTAMINATED SEDIMENTS

There are no specific standards for pollutant concentration in stream sediments. However, sediment guidelines have been established by Ohio EPA for the following metals: Cadmium, arsenic, chromium, lead, copper, zinc and iron. U.S. EPA has established guidelines for the following parameters: Volatile. Solids, Mercury, Cyanide, Nickel, Ammonia-N, Manganese, Total P, TKN and COD. Other toxic pollutants of concern include PAHs, PCBs and phthalates as these have been found above the detection limits.

Low (L) is applied wherein the Ohio EPA Guidelines Severity Ratings indicate Non-Elevated Concentration and U.S. EPA Guidelines Severity Ratings indicate Non-Polluted for the parameters listed in Table 18 of the Investigation Report (Corps of Engineers data, 1983).

Medium (M) is applied wherein the Ohio EPA Guidelines Severity Ratings indicate either Slightly Elevated or Elevated Concentration and the U.S. EPA Guidelines Severity Rating indicate Moderately Polluted for parameters listed in Table 18 of the Investigation Report.

High (H) is applied wherein the Ohio EPA Guidelines Severity Ratings indicated either Highly Elevated Concentration or Extreme Elevated Concentration and U.S. EPA Guidelines Severity Ratings indicated Heavily Polluted for the parameters listed in Table 18 of the *Investigation Report*.

Further, the U.S. EPA Guidelines Severity Ratings indicate Total PCBs of $\geq 10 \text{ mg/kg}$ is heavily polluted. Criteria to be applied is High (H) to conform with this Guideline.

Dr. Paul Bauman, U.S. Fish & Wildlife, indicated that the concentrations for PAHs and phthalates displayed in Table 29 of the Investigation Report (*ibid*) were "the lower end of the range of values for sites with cancer epizootics. However, I would consider these concentrations to pose a possible problem and to be of concern". Criteria to be applied is High (H) for any concentration above the detection limit as shown on Table 29.

LOWER MAUMEE BASIN REMEDIAL ACTION PLAN

WATER QUALITY PROBLEM MATRIX

The Remedial Action Plan Advisory Committee (RAPAC) and its subcommittees have identified twelve water quality problem areas that affect the streams of the Lower Maumee Basin. These water quality problems are:

POTW	Publicly-Operated Treatment Works (sewage treatment plants)
IND	Industrial waste effluent discharges
URBAN	Runoff from urban areas
CSOs	Combined sewer overflows
HOME	Private sewage systems (septic systems, privies, etc.)
PKG	Package sewage treatment plants
SEDIMENTS	Contaminated stream sediments
ATMOS	Deposition of air-borne pollutants
WTP SLUDGE	Accumulation of Water Treatment Plant (lime) sludge in a stream
AG	Runoff from agricultural land
DUMPS	Dumps; landfills; and pits, ponds, and lagoons.
LUST	Leaking Underground Storage Tanks (e.g., gasoline)
DREDGE	Disposal of material dredged from Toledo Harbor

Each of these water quality problems is being addressed by one of the RAPAC subcommittees; the problem ratings are grouped by subcommittee below. The Agricultural Runoff, Dumps/Landfills, and Dredge Disposal subcommittees are listed under 'other' because each has a single water quality issue to deal with.

Classification of Watersheds are based on the impact of each identified water quality problem. The abbreviations are as follows:

H =	High Impac	ct M∶	= Medium Impact	L = Low Impact	
N =	No ^T Impact	U =	- Unknown	S = Suspected, but no data.	
HS=	Suspected	High MS:	Suspected Medium	LS= Suspected Low	
US=	Unknown,	but suspected	i problem	•	

For details on the criteria used to determine the impacts for each water quality problem, please see the accompanying *RAP Area Water Quality Problem Matrix documentation*.

Page #1 06/20/89

WATER QUALITY PROBLEM MATRIX

Lower Maumee Basin Remedial Action Plan

Watershed Numbers	PROBLEM AREAS BY COMMITTEE ASSI Public/Industrial Home Sewage	
*****	북해중철체진중공급모르오한 원북쪽중문제회학정는 물문관문부록류교회적당	▝▝▝▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖
Watershed Name:	AI CREEK	
TMACOG 007 LRIS 007	POTW N URBAN L (HOME H IND N CSOS N PKG H	SEDIMENTS U AG H ATMOS US DUMPS LS
PEMSO 410102		WTP SLUDGE N DREDGE N LUST LS
NOTES Spencer Twp. Du	mp	
Watershed Name:	AYRES CREEK	1
TMACOG 033	POTW N URBAN L HOME H	SEDIMENTS U AG H
LRIS 033 PEMSO 1610302	IND N CSOS N PKG H	ATMOS US DUMPS H WTP SLUDGE N DREDGE N
NOTES Asman Dump, Mill	bury Dump, Molner Packing Imp., St	LUST LS d. Oil Co. Imp.
Watershed Name:	BLUE CREEK @ MOUTH	
TMACOG 040 LRIS 040	POTW N URBAN L HOME M IND N CSOS N PKG H	SEDIMENTS U AG H ATMOS US DUMPS LS
PEMSO 410103	IND N CSOS N PKG H	WTP SLUDGE N DREDGE N
NOTES American Can Im	poundment	LUST LS
Watershed Name:	BLUE CREEK ABOVE HARRIS DITCH	
TMACOG 038	POTW N URBAN L HOME M	SEDIMENTS U AG H
LRIS 038 PEMSO 410103	IND N CSOS N PKG H	ATMOS US DUMPS US WTP SLUDGE N DREDGE N
NOTES	1	LUST LS
Watershed Name:	CAIRL CREEK]
TMACOG 042	POTW N URBAN MS HOME M	SEDIMENTS U AG M
LRIS 042 PEMSO 410132	IND N CSOS N PKG H	ATMOS US DUMPS US WTP SLUDGE N DREDGE N
NOTES		LUST MS

Page #2 06/20/89

-

į

i.

WATER QUALITY PROBLEM MATRIX

Lower Maumee Basin Remedial Action Plan

Watershed Numbers	<u>PROBLEM AREAS BY COMMITTEE ASSIGNMENT</u> <u>Public/Industrial Home Sewage Wtr Qual/Uses O</u>	thers
Watershed Name:	CEDAR CREEK	
TMACOG 032 LRIS 032 PEMSO 1610303	POTW N URBAN L HOME H SEDIMENTS U IND H CSOS N PKG H ATMOS US WTP SLUDGE N	AG H DUMPS M DREDGE N LUST LS
NOTES IND: Conrail/Sta Lime City (21J00		L, Stoneco
Watershed Name:	CRANE CREEK	
TMACOG 033 LRIS 033 PEMSO 1610302	POTW N URBAN L HOME H SEDIMENTS U IND N CSOS N PKG H ATMOS US WTP SLUDGE N	AG H DUMPS M DREDGE N LUST LS
NOTES	and the second	LUSI LS
Watershed Name:	DELAWARE CREEK	
TMACOG 013 LRIS 013 PEMSO 410133	POTW N URBAN H HOME L SEDIMENTS U IND N CSOS N PKG N ATMOS US WTP SLUDGE N	AG N DUMPS HS DREDGE N
NOTES		LUST HS
Watershed Name:	DRY CREEK	
TMACOG 032 LRIS 032 PEMSO 1610303	POTW N URBAN L HOME H SEDIMENTS U IND N CSOS N PKG H ATMOS US WTP SLUDGE N	AG H DUMPS M DREDGE N LUST LS
NOTES		LUST LS
Watershed Name:	DUCK CREEK	
TMACOG 015 LRIS 015 PEMSO 410133	POTW N URBAN H IND L CSOS N PKG N ATMOS US WTP SLUDGE L	AG N DUMPS H DREDGE N
NOTES urbanized		LUST HS

WATER QUALITY PROBLEM MATRIX

Lower Maumee Basin Remedial Action Plan

í

. . .

..

<u>Watershed Numbers</u>	PROBLEM AREAS BY COMMITTEE ASSIGNMENT Public/Industrial Home Sewage Wtr Qual/Uses Others
Watershed Name:	GAIL RUN
TMACOG 039 LRIS 039 PEMSO 410101	POTW NURBAN LHOME MSEDIMENTS UAGSIND NCSOs NPKG HATMOSUSDUMPS MWTP SLUDGE NDREDGE NLUSTLS
NOTES	
Watershed Name:	GRASSY CREEK
TMACOG 045 LRIS 045 PEMSO 410133	POTW NURBAN LHOME MSEDIMENTS UAGHIND MCSOs NPKG HATMOSUSDUMPS MWTP SLUDGE LDREDGE NLUSTLS
NOTES WTP SLUDGE: Box IND: BG WTP (2)	iling Green WTP
Watershed Name:	GRASSY CREEK
TMACOG 046 LRIS 046	POTW N URBAN MS HOME L SEDIMENTS U AG M IND N CSOS N PKG H ATMOS US DUMPS MS
PEMSO 410133	WTP SLUDGE N DREDGE N
	LUST MS
NOTES Rossford Landf Watershed Name:	LUST MS
NOTES Rossford Landf	HALFWAY CR. @ OH/MI LINE POTW N URBAN H HOME M SEDIMENTS U AG M IND N CSOS N PKG N ATMOS US DUMPS US WTP SLUDGE N DREDGE N
NOTES <i>Rossford Landf</i> Watershed Name: TMACOG 022 LRIS 022 PEMSO 410302	HALFWAY CR. @ OH/MI LINE POTW N URBAN H HOME M SEDIMENTS U AG M IND N CSOS N PKG N ATMOS US DUMPS US
NOTES <i>Rossford Landf</i> Watershed Name: TMACOG 022 LRIS 022 PEMSO 410302 NOTES	HALFWAY CR. @ OH/MI LINE POTW N URBAN H HOME M SEDIMENTS U AG M IND N CSOS N PKG N ATMOS US DUMPS US WTP SLUDGE N DREDGE N
NOTES <i>Rossford Landf</i> Watershed Name: TMACOG 022 LRIS 022	HALFWAY CR. @ OH/MI LINE POTW N URBAN H HOME M SEDIMENTS U AG M IND N CSOS N PKG N ATMOS US DUMPS US WTP SLUDGE N DREDGE N LUST HS

Page #4 06/20/89

l

WATER QUALITY PROBLEM MATRIX

Lower Maumee Basin Remedial Action Plan

Watershed Numbers	PROBLEM AREAS BY COMMITTEE ASSIGNMENT Public/Industrial Home Sewage Wtr Qual/Uses Others			
Watershed Name:	HALFWAY CR. ABOVE SHANTEE CR			
TMACOG 021 LRIS 021 PEMSO 410302	POTW N URBAN M HOME L SEDIMENTS U AG M IND N CSOS N PKG H ATMOS US DUMPS L WTP SLUDGE N LUST MS			
NOTES				
Watershed Name:	HARRIS DITCH			
TMACOG 075 LRIS 075 PEMSO 410103	POTW N URBAN L HOME M SEDIMENTS U AG H IND N CSOS N PKG N ATMOS US DUMPS LS WTP SLUDGE N LUST LS			
NOTES				
Watershed Name:	HENRY CREEK			
TMACOG 033 LRIS 033 PEMSO 1610302	POTW N URBAN L HOME H SEDIMENTS U AG H IND N CSOS N PKG H ATMOS US DUMPS H WTP SLUDGE N LUST LS			
NOTES				
Watershed Name:	HILL DITCH	<u> </u>		
TMACOG 202 LRIS 202 PEMSO 411331	POTW N URBAN M HOME H IND N CSOS N PKG H ATMOS US DUMPS US WTP SLUDGE N LUST MS			
NOTES				
Watershed Name:	LAKE ERIE			
TMACOG LRIS PEMSO	POTW N URBAN L HOME L SEDIMENTS M AG H IND L CSOS N PKG L ATMOS US DUMPS U WTP SLUDGE N DREDGE H LUST LS			
NOTES				
Watershed Name: LAKE ERIE WATERSHED #1				
TMACOG 030 LRIS 030 PEMSO 411133	POTW N URBAN H HOME L SEDIMENTS L AG N IND L CSOS N PKG H ATMOS US DUMPS H WTP SLUDGE N LUST HS			
NOTES Dumps/Landfills	Treasure Island, Willys Park, Stickney Ave.			

Page #5 06/20/89

WATER QUALITY PROBLEM MATRIX

Lower Maumee Basin Remedial Action Plan

Watershed Numbers	<u>PROBLEM AREAS BY COMMITTEE ASSIGNMENT</u> <u>Public/Industrial Home Sewage</u> <u>Wtr Qual/Uses</u> <u>Others</u>
Watershed Name:	LAKE ERIE WATERSHED #2
TMACOG 031 LRIS 031 PEMSO 411364	POTW NURBAN LHOME HSEDIMENTS UAGHIND NCSOs NPKG HATMOSUSDUMPS MSWTP SLUDGE NDREDGE NLUSTLS
NOTES	
Watershed Name:	LAKE ERIE WATERSHED #3
TMACOG 034 LRIS 034 PEMSO 411363	POTW N URBAN L HOME H SEDIMENTS L AG H IND N CSOS N PKG N ATMOS US DUMPS US WTP SLUDGE N LUST LS
NOTES	
Watershed Name:	LAKE ERIE WATERSHED #4
TMACOG 035 LRIS 035 PEMSO 411362	POTW N URBAN L HOME M SEDIMENTS L AG H IND N CSOS N PKG N ATMOS US DUMPS US WTP SLUDGE N LUST LS
NOTES	
Watershed Name:	LITTLE CEDAR CREEK
TMACOG 032 LRIS 032 PEMSO 1610303	POTW N URBAN L HOME H SEDIMENTS U AG H IND N CSOS N PKG N ATMOS US DUMPS HS WTP SLUDGE N LUST LS
NOTES	
Watershed Name:	LITTLE CRANE CREEK
TMACOG 033 LRIS 033 PEMSO 1610302	POTW N URBAN L HOME H SEDIMENTS U AG H IND N CSOS N PKG H ATMOS US DUMPS HS WTP SLUDGE N DREDGE N
NOTES	LUST LS

l,∷t

].

Page #6 06/20/89

WATER QUALITY PROBLEM MATRIX

Lower Maumee Basin Remedial Action Plan

<u>Watershed Numbers</u>	PROBLEM AREAS BY C Public/Industrial			Others
Watershed Name:	MAUMEE BAY	1	1	•
TMACOG LRIS PEMSO	POTW N URBAN L IND L CSOs M	HOME L PKG L	SEDIMENTS H ATMOS US WTP SLUDGE N	AG H DUMPS U DREDGE H LUST LS
NOTES	I	ł	1	
Watershed Name:	MAUMEE RIVER @ ANT	HONY WAYNE BR	1	······
TMACOG 013 LRIS 013 PEMSO 410133	POTW N URBAN H IND H CSOs M	HOME L PKG H	SEDIMENTS H ATMOS US WTP SLUDGE N	AG H DUMPS M DREDGE N LUST HS
NOTES IND: Conrail 21	100015	I	1	
Watershed Name:	MAUMEE RIVER @ BLU	IEGRASS IS	· · · ·	
TMACOG 079 LRIS 079 PEMSO 410133	POTW H URBAN M IND N CSOS M	HOME L PKG H	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS MS DREDGE N LUST MS
NOTES POTW: Perrysbur	g WWTP (=H)	I	I	
Watershed Name:	MAUMEE RIVER @ GR/	ISSY CR	1	
TMACOG 047 LRIS 047 PEMSO 410133	POTW N URBAN M IND H CSOS M	HOME L PKG N	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS MS DREDGE N LUST MS
NOTES IND: Libbey-Owe	 ns-Ford #6 (2IN00030	р) н	1	LOSI PIS
Watershed Name:	MAUMEE RIVER @ GR/	SSY CR DIVERS	TON	
TMACOG 044 LRIS 044 PEMSO 410133	POTW L URBAN L IND L CSOS M	HOME L PKG H	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS MS DREDGE N
NOTES POTW: Maumee Ri	 ver WWTP (=L)		1	LUST LS

Page #7 06/20/89

WATER QUALITY PROBLEM MATRIX

.

Lower Maumee Basin Remedial Action Plan

Watershed Numbers	PROBLEM AREAS BY COMMITTEE ASSIG Public/Industrial Home Sewage W				
Watershed Name: MAUMEE RIVER @ MOUTH					
TMACOG 015 LRIS 015 PEMSO 410133	POTW H URBAN H HOME L IND M CSOS M PKG N	SEDIMENTS H AG H ATMOS US DUMPS H WTP SLUDGE N DREDGE M			
NOTES SEDIMENTS: PAHs. Consaul St. Dump POTW: Toledo Bay View WWTP = H IND: Toledo Edison Acme (21B00001) M, Toledo Coke (21D00011) L					
Watershed Name:	MAUMEE RIVER BELOW ANTHONY WAYNE	BR			
TMACOG 014 LRIS 014 PEMSO 410133	POTW N URBAN H HOME L IND N CSOS M PKG N	SEDIMENTS H AG H ATMOS US DUMPS US WTP SLUDGE N LUST HS			
NOTES					
Watershed Name:	MAUMEE AT WATERVILLE	1 :			
TMACOG 043 LRIS 043 PEMSO 410235	POTW L URBAN L HOME H IND L CSOS N PKG N	SEDIMENTS L AG H ATMOS US DUMPS M WTP SLUDGE N DREDGE N LUST LS			
NOTES POTW: Haskins W	\TP (=L)	LUST LS			
Watershed Name:	MOSQUITO CREEK				
TMACOG 040 LRIS 040 PEMSO 410103	POTW N URBAN L HOME M IND N CSOS N PKG N	SEDIMENTS L AG M ATMOS US DUMPS M WTP SLUDGE N DREDGE N			
NOTES		LUST LS			
Watershed Name:	OTTAWA RIVER @ MOUTH				
TMACOG 005 LRIS 005 PEMSO 411331	POTW N URBAN H HOME L IND H CSOs H PKG N	SEDIMENTS H AG H ATMOS US DUMPS H WTP SLUDGE N DREDGE N			
NOTES Dura dump, et al., and Helfinger Pond IND: Diversitech (2IQ00012) H, DuPont (2IF00017) L					

Page #8 06/20/89

WATER QUALITY PROBLEM MATRIX

Lower Maumee Basin Remedial Action Plan

<u>Watershed Numbers</u>	PROBLEM AREAS BY C Public/Industrial				
و بحد هذه بعد بعد بعد بعد بعد بعد الله الله الله عنه العا بعد الله بعد الله عنه الله علم الله علا عل			<u></u>		
Watershed Name:	OTTAWA RIVER @ TOL	EDO	1		
TMACOG 004 LRIS 004 PEMSO 411331	POTW N URBAN M IND H CSOs N	HOME H PKG H	SEDIMENTS H AG H ATMOS US DUMPS H WTP SLUDGE N DREDGE N LUST MS		
NOTES IND: King Road	Landfill (2IN0079)	ł			
Watershed Name:	OTTER CREEK	· · · ·	1 3		
TMACOG 028 LRIS 028 PEMSO 1610364	POTW H URBAN M IND H CSOs N	HOME H PKG H	SEDIMENTS H AG H ATMOS US DUMPS H WTP SLUDGE H DREDGE N LUST MS		
Edison Bayshore WTP SLUDGE: Tole	8 (2IN00020) H, Sun ondessey (2IN00013) (2IB00000) L, Stand	ard 0i1 (2IG0			
Watershed Name:	PRAIRIE DITCH		,		
TMACOG 002 LRIS 002 PEMSO 410301	POTW N URBAN L IND N CSOS N	HOME H PKG N	SEDIMENTS U AG H ATMOS US DUMPS US WTP SLUDGE N DREDGE N		
NOTES	1		LUST LS		
Watershed Name:	REITZ ROAD DITCH	1	e i		
TMACOG 078 LRIS 078 PEMSO 411235	POTW N URBAN L IND N CSOS N	HOME H PKG N	SEDIMENTS L AG U ATMOS US DUMPS US WTP SLUDGE N LUST LS		
NOTES					
Watershed Name:	SHANTEE CREEK		1 1		
TMACOG 020 LRIS 020 PEMSO 410302	POTW N URBAN H IND H CSOs N	Home H PKG N	SEDIMENTS L AG N ATMOS US DUMPS H WTP SLUDGE N DREDGE N LUST HS		
NOTES Partly on septic systems; mostly sewered.					

IND: Doehler-Jarvis (2IC00021) H, DuPont Paint (2IF00016) M

Page #9 06/20/89 ,

WATER QUALITY PROBLEM MATRIX Lower Maumee Basin Remedial Action Plan

Watershed Numbers	<u>PROBLEM AREAS BY CO</u> <u>Public/Industrial H</u>			
Watershed Name:	SIBLEY CREEK		1	3
TMACOG 005 LRIS 005 PEMSO 411331	POTW N URBAN H IND N CSOS N	HOME L PKG N	SEDIMENTS U ATMOS US WTP SLUDGE N	AG H DUMPS H DREDGE N LUST HS
NOTES				
Watershed Name:	SILVER CREEK		1	
TMACOG 023 LRIS 023 PEMSO 410302	POTW N URBAN H IND H CSOs N	HOME L PKG H	SEDIMENTS U ATMOS US WTP SLUDGE N	AG L DUMPS US DREDGE N LUST HS
NOTES IND: General Mil	ls (2IH00093) H, Tel	edyne (21000)	b01) L	
Watershed Name:	SWAN CREEK @ MOUTH		1	1
TMACOG 012 LRIS 012 PEMSO 410132	POTW N URBAN H IND N CSOS H	HOME L PKG N	SEDIMENTS H ATMOS US WTP SLUDGE N	AG H DUMPS H DREDGE N
NOTES South Ave. Dump			и т _е и т	LUST HS
Watershed Name:	SWAN CREEK @ TOLEDO		•	<u></u>
TMACOG 010 LRIS 010 PEMSO 410132	POTW N URBAN H IND N CSOS M	HOME L PKG N	SEDIMENTS M ATMOS US WTP SLUDGE N	AG H DUMPS MS DREDGE N LUST HS
NOTES CSO: Lower water	rshed has CSOs, but u	pper watersh	ed has none.	
Watershed Name:	SWAN CREEK ABOVE AI	CREEK	•	
TMACOG 008 LRIS 008 PEMSO 410101	POTW N URBAN L IND N CSOS N	HOME M PKG N	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS US DREDGE N LUST LS
NOTES	I I			1

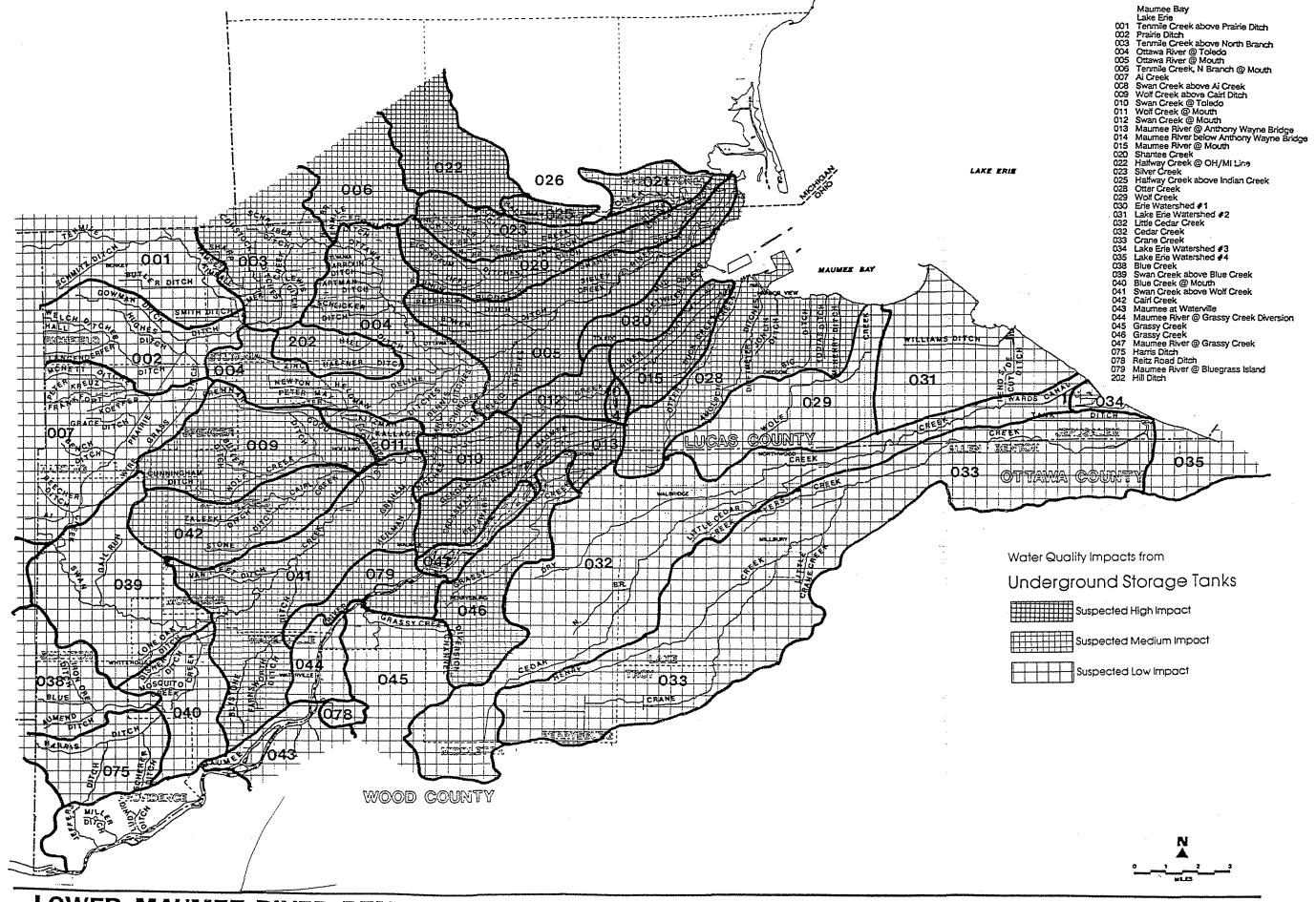
.

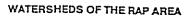
Page #10 06/20/89

WATER QUALITY PROBLEM MATRIX

Lower Maumee Basin Remedial Action Plan

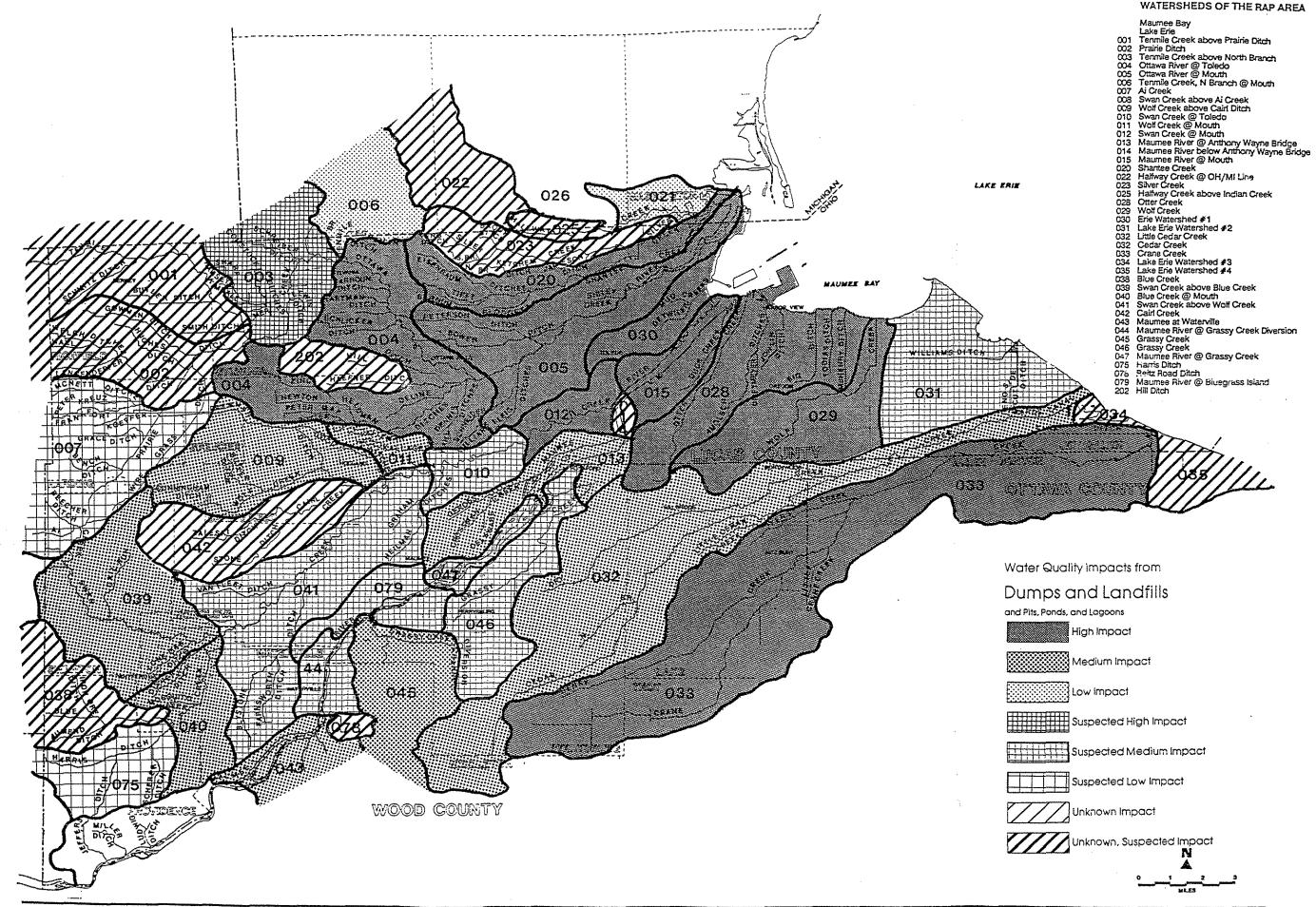
Watershed Numbers	<u>PROBLEM AREAS BY</u> <u>Public/Industrial</u>			<u>)thers</u>
Watershed Name:	SWAN CREEK ABOVE	BĻUE CREEK	1	1
TMACOG 039 LRIS 039 PEMSO 410131	POTW N URBAN L IND N CSOS H	HOME M PKG H	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS LS DREDGE N LUST LS
NOTES CSO: Whitehous		·		
Watershed Name:	SWAN CREEK ABOVE	WOLF CR	1	1
TMACOG 041 LRIS 041 PEMSO 410132	POTW N URBAN MS IND L CSOS M	HOME H PKG H	SEDIMENTS M ATMOS US WTP SLUDGE N	AG H DUMPS MS DREDGE N LUST MS
NOTES Partly on sept CSO: Below Whit	ic systems, partly s tehouse. Most of wat		e.	
Watershed Name:	TENMILE CREEK ABO	VE NORTH BRANC	H	ł
TMACOG 003 LRIS 003 PEMSO 410301	POTW N URBAN MS IND L CSOs N	HOME H PKG H	SEDIMENTS M ATMOS US WTP SLUDGE N	AG H DUMPS HS DREDGE N LUST MS
NOTES IND: Reichert	Stamping (2IS00008)	L, France Ston	e Silica (2IJ000.	
Watershed Name:	TENMILE CREEK ABO	VE PRAIRIE DIT	ĊН	•
TMACOG 001 LRIS 001 PEMSO 410301	POTW N URBAN L IND N CSOS N	HOME M PKG H	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS US DREDGE N LUST LS
NOTES	I	ł	I	
Watershed Name:	TENMILE CREEK, N	BRANCH @ MOUTH	1	
TMACOG 006 LRIS 006 PEMSO 410301	POTW N URBAN M IND N CSOS N	HOME H PKG N	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS L DREDGE N LUST MS
	ic systems; mostly s	a la companya and	1	LOSI INS

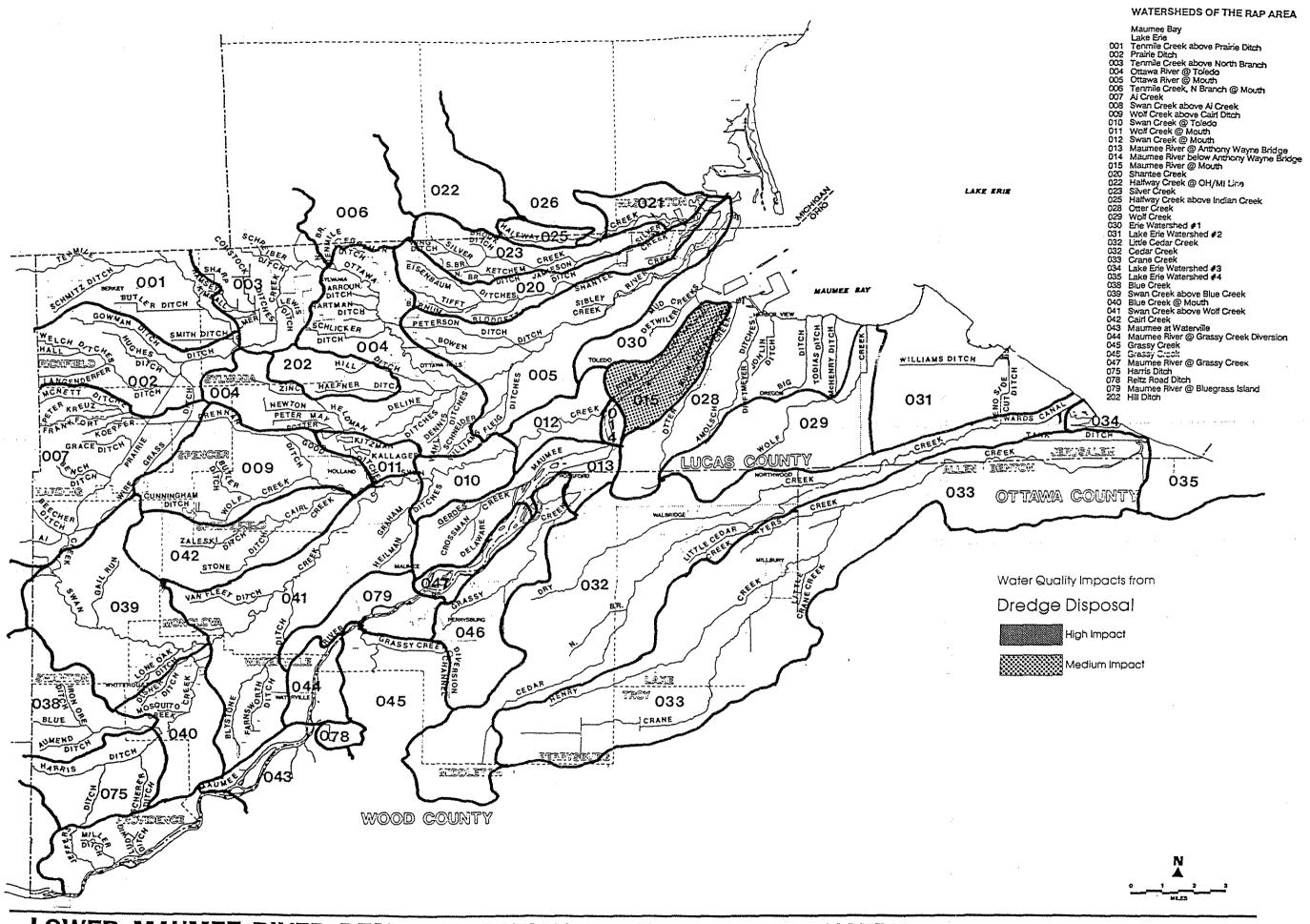

Page #11 06/20/89


WATER QUALITY PROBLEM MATRIX

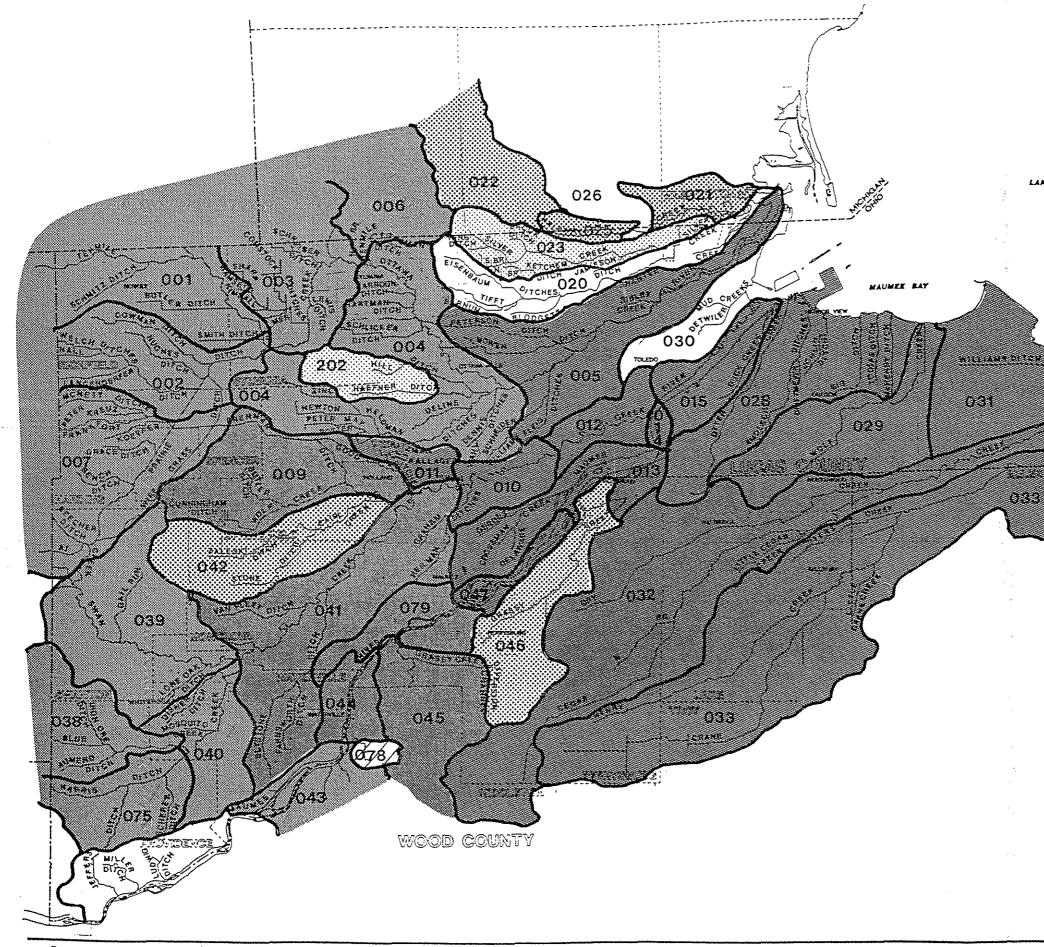
Lower Maumee Basin Remedial Action Plan

{


<u>Watershed Numbers</u>	PROBLEM AREAS BY C Public/Industrial			<u>)thers</u>
Watershed Name:	WOLF CREEK			
TMACOG 029 LRIS 029 PEMSO 1610364 NOTES	POTW N URBAN L IND L CSOS N	HOME H PKG H	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS H DREDGE N LUST LS
Watershed Name:	WOLF CREEK @ MOUTH			
TMACOG 011 LRIS 011 PEMSO 410132	POTW N URBAN M IND N CSOS N	HOME H PKG H	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS M DREDGE N LUST MS
NOTES Angola Rd. Dump				
Watershed Name:	WOLF CREEK ABOVE C	AIRL DITCH		
TMACOG 009 LRIS 009 PEMSO 0410132 NOTES	POTW N URBAN MS IND L CSOS N	HOME H PKG H	SEDIMENTS L ATMOS US WTP SLUDGE N	AG H DUMPS M DREDGE N LUST MS



WATERSHEDS OF THE RAP AREA


tran

WATERSHEDS OF THE RAP AREA

than

WATERSHEDS OF THE RAP AREA

Maumee Bay

- WATERSHEDS OF THE RAP AREA Maumee Bay Lake Erie 001 Tenmile Creek above Prairie Ditch 002 Prairie Ditch 003 Tenmile Creek above North Branch 004 Ottawa River @ Mouth 005 Ottawa River @ Toledo 005 Ottawa River @ Toledo 006 Tenmile Creek, N Branch @ Mouth 007 Ai Creek 008 Swan Creek above Ai Creek 009 Wolf Creek above Cairl Ditch 010 Swan Creek @ Mouth 011 Wolf Creek @ Mouth 012 Swan Creek @ Mouth 013 Maumee River @ Anthony Wayne Bridge 014 Maumee River @ Anthony Wayne Bridge 015 Maumee River @ Mouth 020 Shartee Creek 021 Halfway Creek @ OH/MI Line 023 Silver Creek 025 Halfway Creek @ OH/MI Line 023 Silver Creek 025 Halfway Creek @ OH/MI Line 026 Stier Creek 027 Uttle Cedar Creek 028 Wolf Creek 029 Wolf Creek 029 Wolf Creek 021 Lake Erie Watershed #1 031 Lake Erie Watershed #2 032 Little Cedar Creek 033 Lake Erie Watershed #3 035 Lake Erie Watershed #3 035 Lake Erie Watershed #4 038 Blue Creek 039 Swan Creek above Blue Creek 043 Maumee River @ Grassy Creek Diversion 045 Grassy Creek 044 Maumee River @ Grassy Creek 045 Haris Ditch 079 Maumee River @ Bluegrass Island 202 Hill Ditch 079 Maumee River @ Bluegrass Island 202 Hill Ditch

Water Quality Impacts from

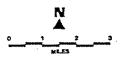
COPYER CONST

Agricultural Runoff

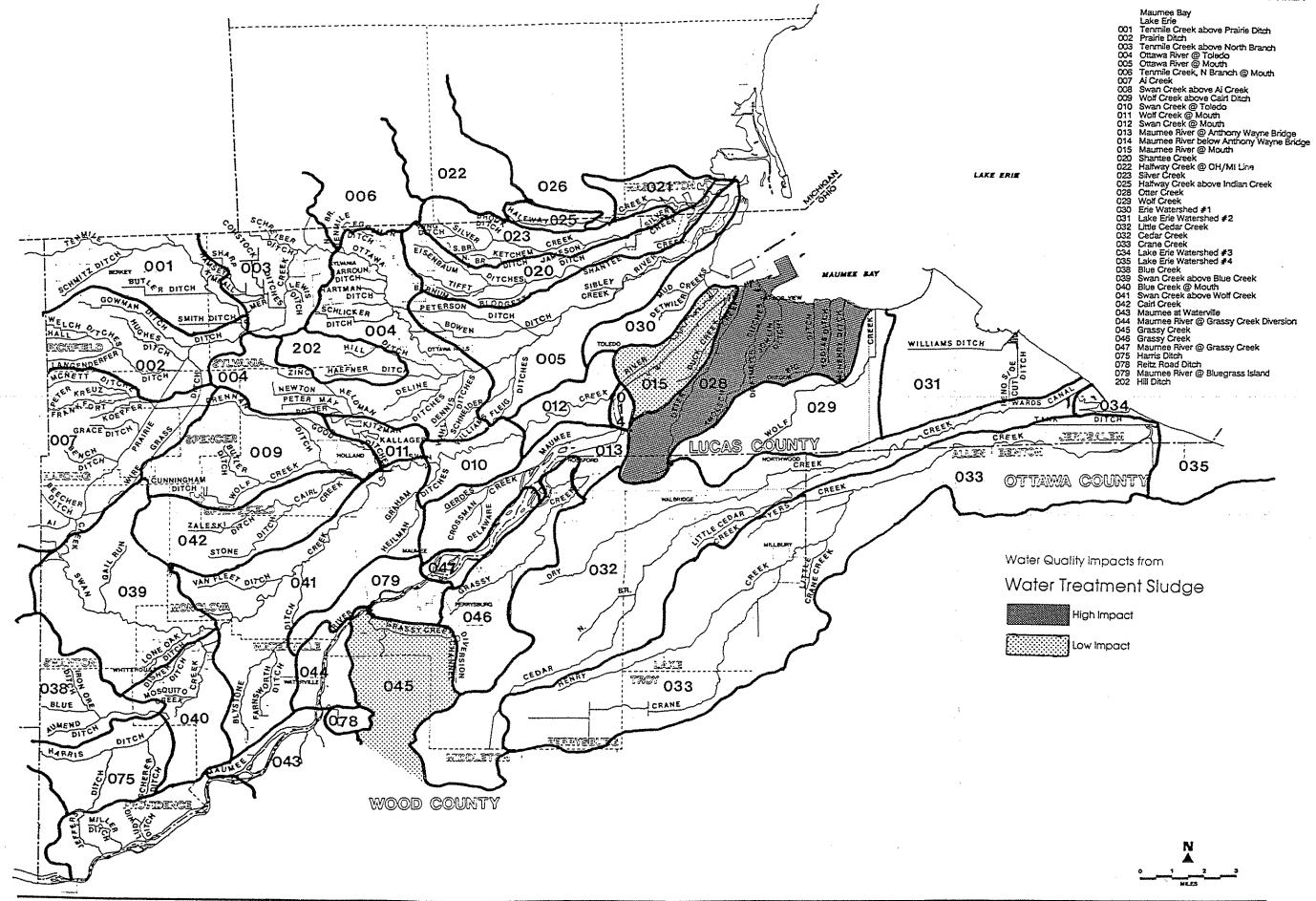
LAKE ERIE

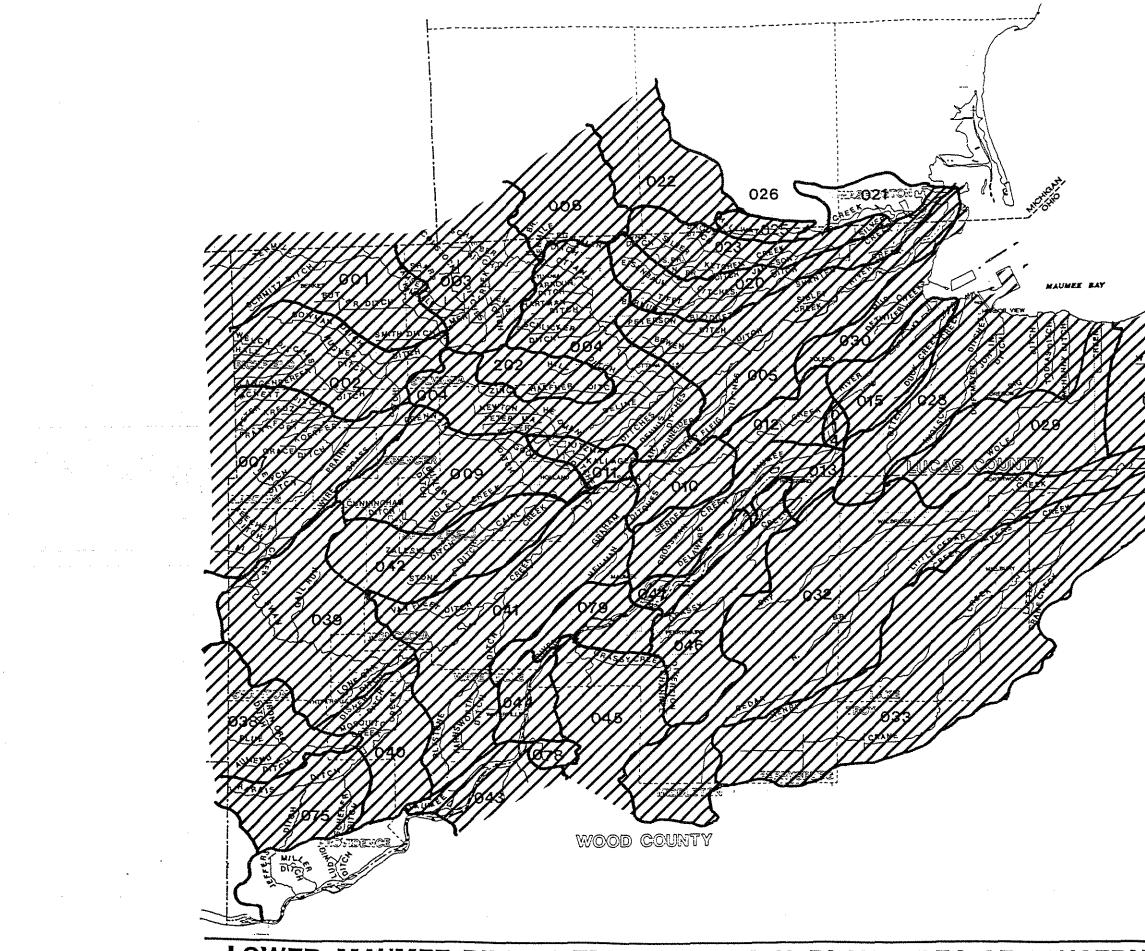
High Impact

034

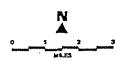

Medium Impact

Low Impact

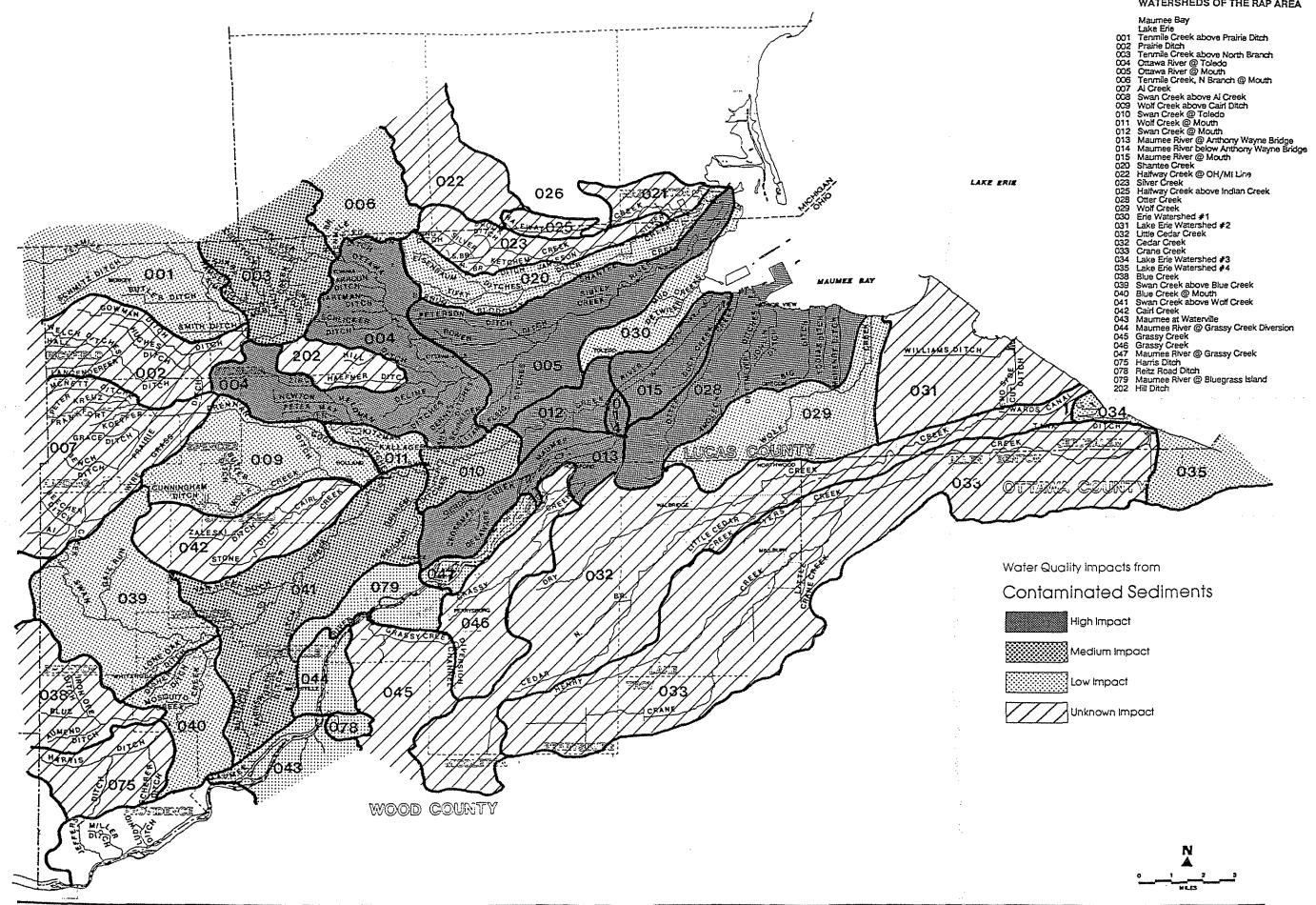



Unknown Impact

WATERSHEDS OF THE RAP AREA

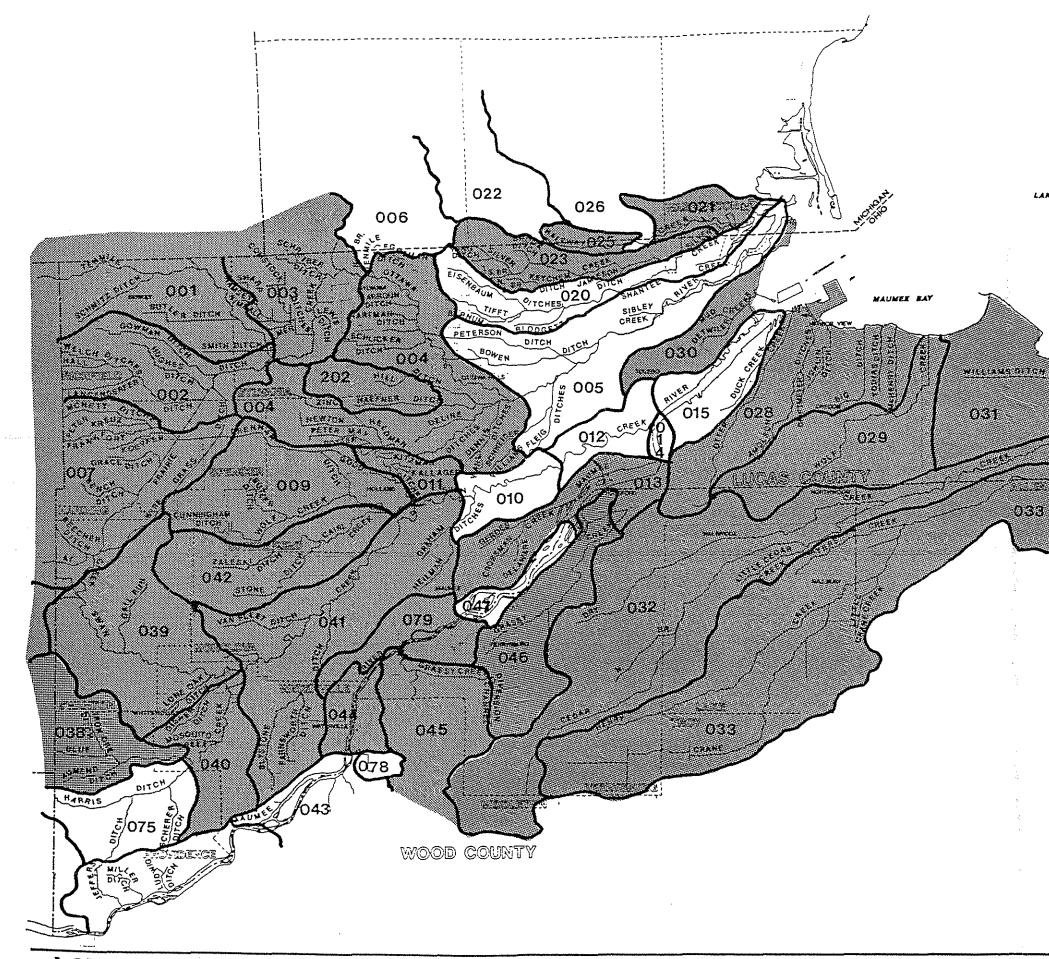


WATERSHEDS OF THE RAP AREA Maumee Bay Lake Erie 001 Tenmile Creek above Prairie Ditch 002 Prairie Ditch 003 Tenmile Creek above North Branch 004 Ottawa River @ Toledo 005 Ottawa River @ Mouth 007 Ai Creek 008 Swan Creek above Cair Ditch 009 Ottawa River @ Mouth 010 Swan Creek @ Mouth 010 Swan Creek @ Mouth 010 Swan Creek @ Mouth 011 Wolf Creek @ Mouth 012 Swan Creek @ Mouth 013 Maumee River @ Anthony Wayne Bridge 014 Maumee River @ Mouth 015 Maumee River @ Mouth 016 Shantee Creek 017 Halfway Creek above Indian Creek 028 Shartee Creek 029 Wolf Creek 020 Erie Watershed #1 031 Lake Erie Watershed #2 032 Crane Creek 033 Crane Creek 034 Lake Erie Watershed #3 035 Lake Erie Watershed #4 038 Blue Creek @ Mouth 041 Swan Creek above Blue Creek 043 Blue Creek 044 Maumee River @ Grassy Creek Diversion 045 Grassy Creek 045 Maumee River @ Grassy Creek 046 Grassy Creek 047 Maumee River @ Grassy Creek 048 Maumee River @ Grassy Creek 049 Blue Creek Diversion 045 Grassy Creek 047 Maumee River @ Grassy Creek 048 Maumee River @ Grassy Creek 049 Maumee River @ Grassy Creek 040 Blue Creek Diversion 045 Grassy Creek 047 Maumee River @ Bluegrass Island 040 Hill Ditch WATERSHEDS OF THE RAP AREA


Water Quality Impacts from

Atmospheric Deposition

Unknown, Suspected Impact



LAKE ERIE

WATERSHEDS OF THE RAP AREA

fnam

WATERSHEDS OF THE RAP AREA

Maumee Bay

- Maumee Bay Lake Erie 001 Tenmile Creek above Prairie Ditch 002 Prairie Ditch 003 Tenmile Creek above North Branch 004 Ottawa River @ Toledo 005 Ottawa River @ Mouth 005 Tenmile Creek, N Branch @ Mouth 006 Tenmile Creek, N Branch @ Mouth 007 Ai Creek 008 Swan Creek above Ai Creek 009 Wolf Creek above Cairl Ditch 010 Swan Creek @ Toledo 011 Wolf Creek @ Mouth 012 Swan Creek @ Mouth

- 011 Wolf Creek @ Mouth 012 Swan Creek @ Mouth 013 Maumee River @ Anthony Wayne Bridge 014 Maumee River @ Mouth 015 Maumee River @ Mouth

035

- 014
 Maumee River Delow Anthony Wayne Bridg

 015
 Maumee River @ Mouth

 020
 Shantee Creek

 021
 Halfway Creek @ OH/Mi Ling

 023
 Silver Creek

 024
 Halfway Creek @ OH/Mi Ling

 025
 Halfway Creek above Indian Creek

 028
 Otter Creek

 029
 Wolf Creek

 020
 Erie Watershed #1

 031
 Lake Erie Watershed #2

 032
 Litle Cedar Creek

 033
 Crane Creek

 034
 Lake Erie Watershed #3

 035
 Lake Erie Watershed #3

 035
 Lake Erie Watershed #4

 038
 Blue Creek

 039
 Swan Creek above Blue Creek

 040
 Blue Creek @ Mouth

 041
 Swan Creek above Blue Creek

 043
 Blue Creek @ Mouth

 044
 Swan Creek above Blue Creek

 043
 Suite Creek @ Mouth

 044
 Swan Creek above Wolf Creek

 045
 Grassy Creek

 044
 Maumee at Waterville

 044
 Maumee River @ Grassy Creek

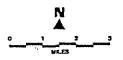
 045< 079 Maumee River @ Bluegrass Island 202 Hill Ditch

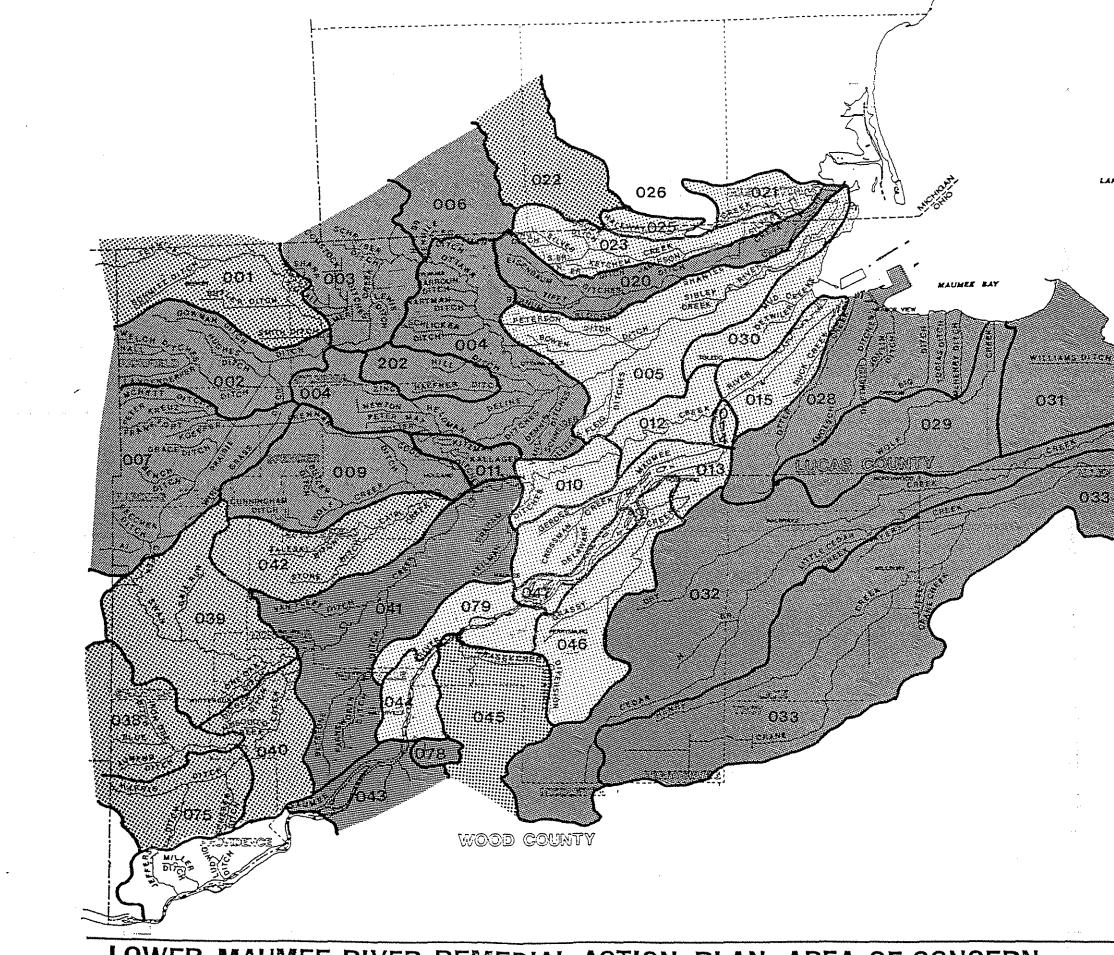
<u>034</u>

Water Quality Impacts from

Package Plants

OT TANK COUNT




LAKE ERIE

10 16 16

High Impact

Low Impact

WATERSHEDS OF THE RAP AREA

- Maumee Bay Lake Erie 001 Termile Creek above Prairie Ditch 002 Prairie Ditch 003 Termile Creek above North Branch 004 Ortawa River @ Toledo 005 Ortawa River @ Mouth 006 Termile Creek, N Branch @ Mouth 007 Ai Creek 008 Swan Creek above Ai Creek 008 Swan Creek above Ai Creek 009 Wolf Creek above Cairt Ditch 010 Swan Creek @ Toledo 011 Wolf Creek @ Mouth 012 Swan Creek @ Mouth 013 Maumee River @ Anthony Wayne Bridge 014 Maumee River @ Mouth 015 Maumee River @ Mouth 020 Shantee Creek

- 015 Maumee River @ Mouth 020 Shantee Creek 022 Halfway Creek @ OH/MI Line 023 Silver Creek 025 Halfway Creek above Indian Creek 029 Wolf Creek 029 Wolf Creek 030 Erie Watershed #1 031 Lake Erie Watershed #2 032 Little Cedar Creek 032 Creder Creek

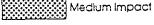
- Cost Carlos Creek
 Carlos C
- 075 Harris Ditch 073 Reitz Road Ditch 079 Maumee River @ Maumee River @ Bluegrass Island 202 Hill Ditch

035

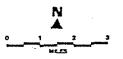
Water Quality Impacts from

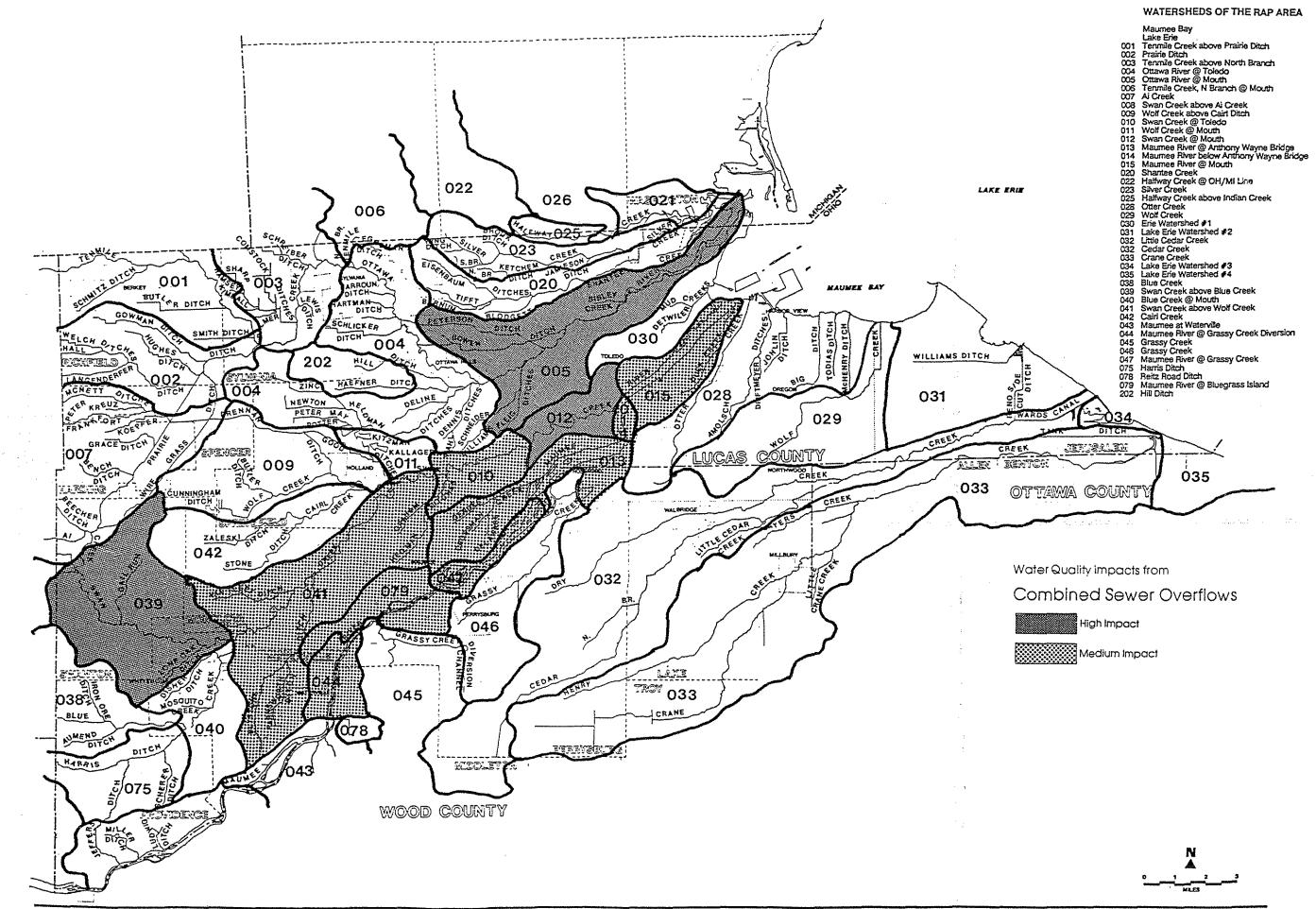
Home Sewage Systems

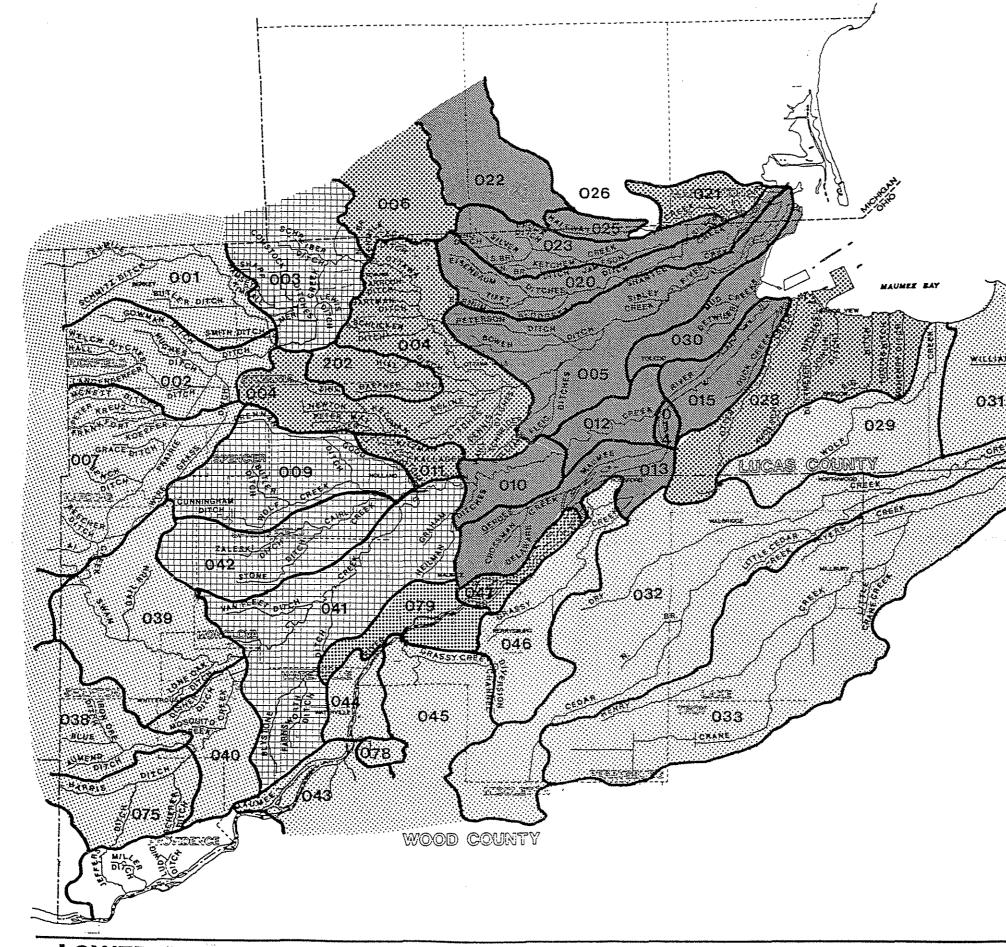
034



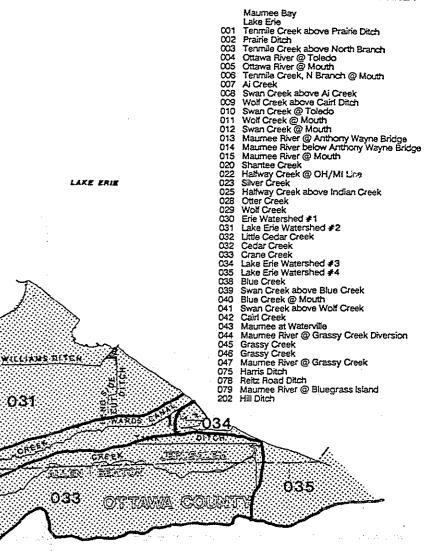
033 67 244 66000


LAKE ERIE


High Impact

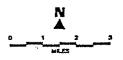


Low Impact

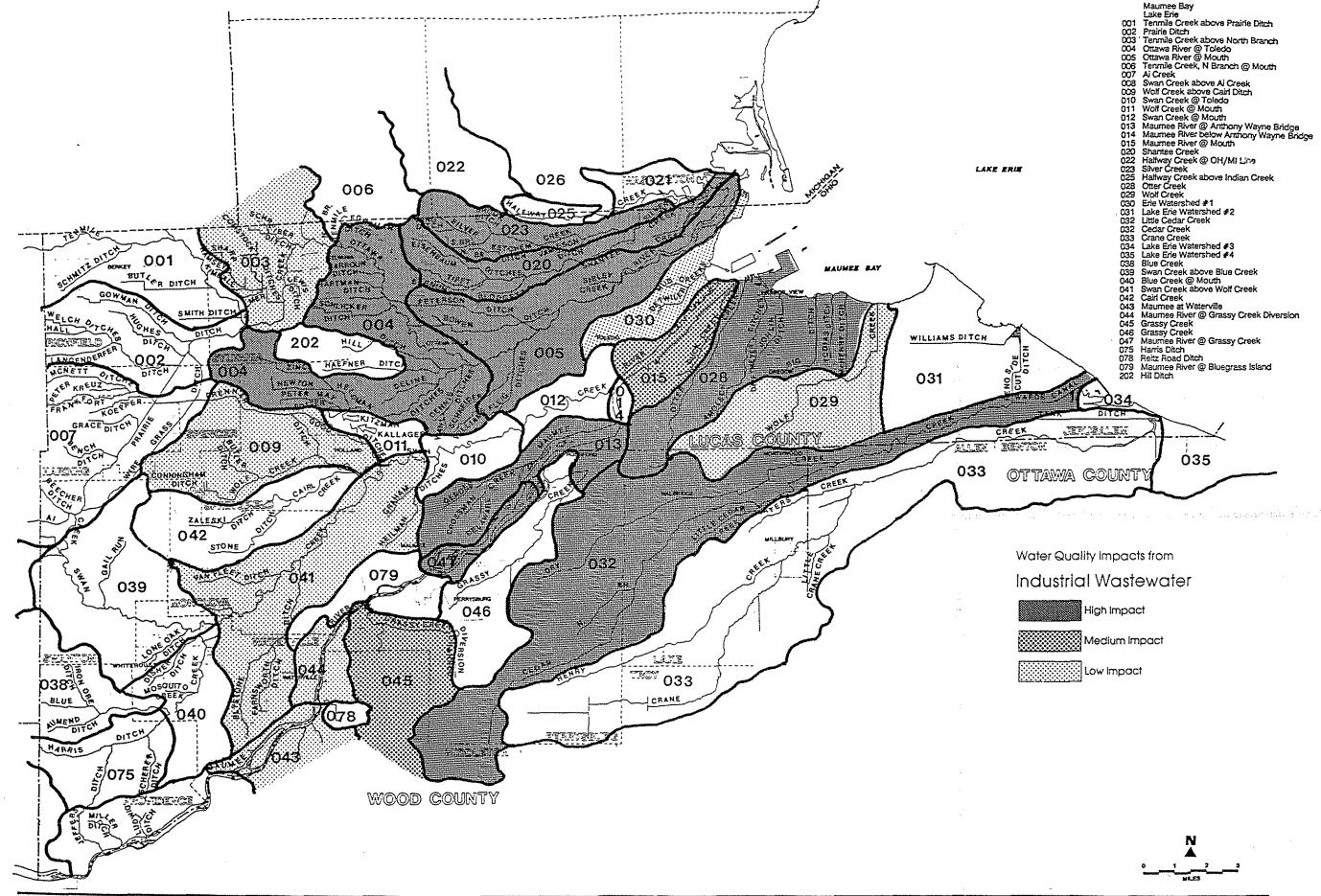


WATERSHEDS OF THE RAP AREA

Water Quality Impacts from

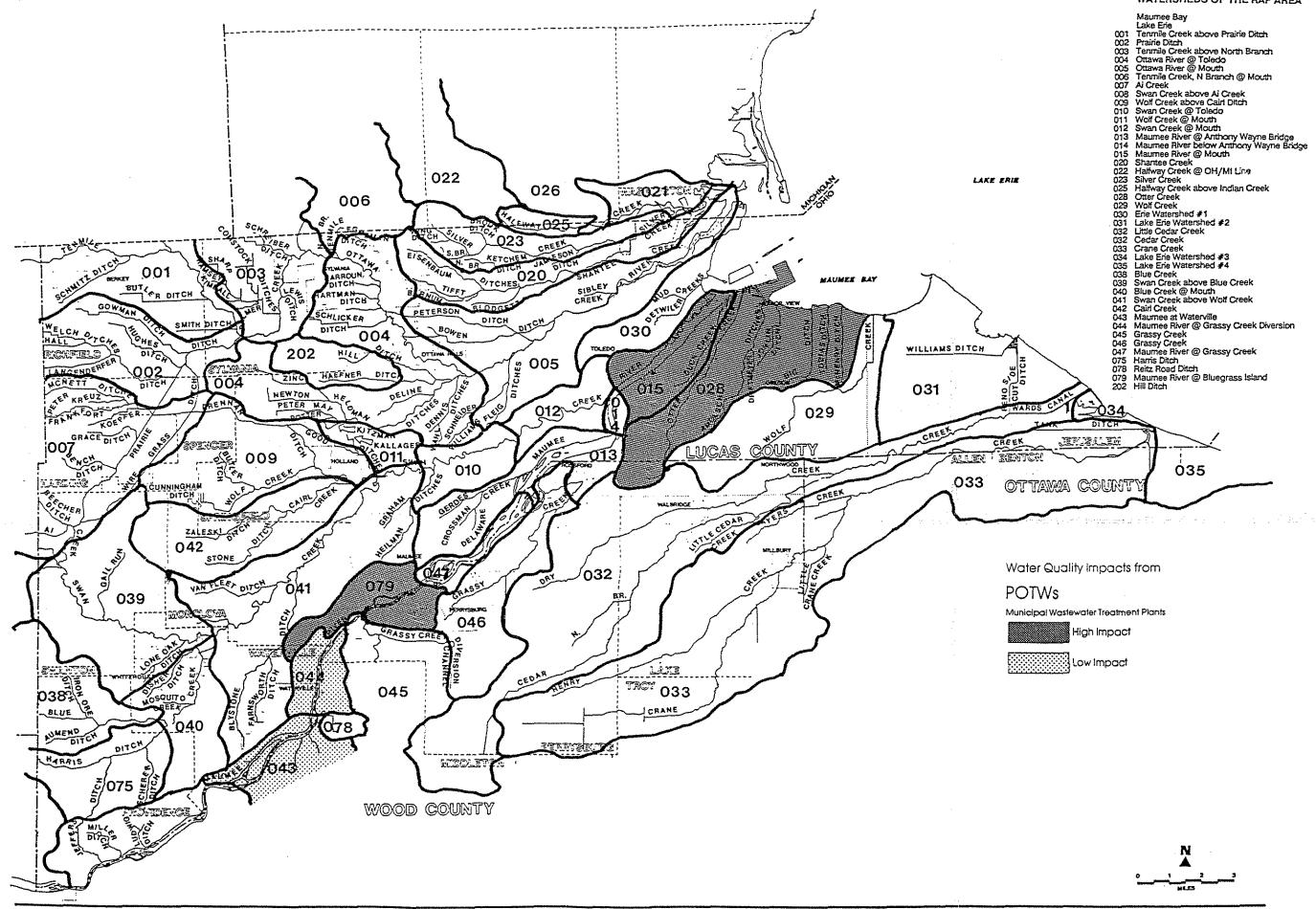

Urban Runoff

High Impact


Medium Impact

Low Impact

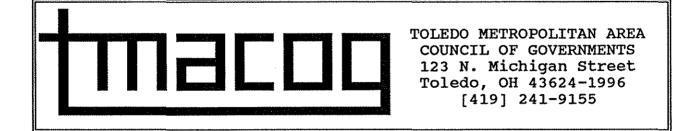
Suspected Medium Impact





WATERSHEDS OF THE RAP AREA

LOWER MAUMEE RIVER REMEDIAL ACTION PLAN - AREA OF CONCERN



LOWER MAUMEE BASIN

REMEDIAL ACTION PLAN

Volume 2 Investigation Report Appendices January, 1989

LOWER MAUMEE BASIN

REMEDIAL ACTION PLAN

Volume 2

CONTENTS Investigation Report Appendices

APPENDIX A

Ohio EPA Biological Water Quality Report Sediment Data: Priority Pollutants Source: Ohio EPA

APPENDIX B

Package Sewage Treatment Plant Data Source: Ohio EPA

APPENDIX C

NPDES Permits in the RAP Area Source: Ohio EPA

APPENDIX D

Package Sewage Treatment Plants in the RAP Area Source: TMACOG database compiled from local agencies, field work, and Ohio EPA records

APPENDIX E

Publicly-Owned Treatment Works in the RAP Area Source: TMACOG database compiled from local agencies

APPENDIX F

Publicly-Owned Treatment Works Effluent Data Source: Ohio EPA

APPENDIX G

Ohio EPA Biological Water Quality Report Draft Monitoring Report Source: Ohio EPA

APPENDIX H

Toxic Pollutant Listing Source: §307 of the 1987 Clean Water Act, Table 1

APPENDIX I

NPDES Permit Violations, 1987-1988 Source: Ohio EPA

APPENDIX A

Ohio EPA *Biological Water Quality Report* Sediment Data: Priority Pollutants

Sediment Data: Volatile Organics

In RAP Area Streams

I SAMPLE HUMBER :

APPENDIX A SEDIMENT DATA: VOLATILE ORGANICS

LABORATORY NAME

THA/ERS

MAUMEE RIVER RAI.O

DOWNSTREAM OF TOLEDO NATE

I SAMPLE NUMBER I I I IVILZ924 R I

ORGANICS ANALYSIS DATA SHEET (PAGE 1)

LABORATORY NAME: THA/ERB CASE NO: ABORE LAB SAMPLE ID NO: VIA2924R BC REPORT NO: SAMPLE NATRIX: SOIL DATA RELEASE AUTHORIZED BY: CALOPHCL HADDENDERE SAMPLE RECEIVED: 11/14/84

VOLATILE CONFOUNDS

CONCENTRATION: LOW DATE EXTRACTED/PREPARED: 12/42/46 DATE ANALYZED: 12/42/46 Dil Pactor: 9,434 PH 7.38 Pencent Noisture: (Not decanted) 41.4

CAS NUMBER		US/KS	CAS NUMBER		UG/KG	5
74-67-3	CHLOROMETHANE	249. U	78-87-5 1.2-DICHLOROPROPANE		129.	Ų
74-83-7	#RONGHETHAKE	249. U	10061-02-6 TRANS-1,3-DICHLOROPROEHE		120.	Ų
75-01-4	VINYL CHLORIDE	240. U	77-61-6 TRICHLOROETHENE		129,	U
75-44-3	CHLOROETHANE	240. U	124-48-1 DIBROHOCHLORONETHANE		120.	u –
75-44-2	METHYLENE CHLORIDE	270. 8	79-00-5 1.1.2-TRICHLORDETHANE .		120.	U
47-44-1	ACETONE	180. BJ	71-43-2 SENZERE		120.	U
75-15-0	CARBON DISULFIDE	120. U	10041-01-5 CIS-1. 3-OICHLORDFROPENE		120.	ų –
75-35-4	1.1-DICHLORGETHENE	120. 0	110-75-8 2-CHLOROETHYLVINYLETHER		249.	U
75-35-7	1.1-DICHLORGETHANE	120. U	75-25-2 SROKOFORM		120.	Ų
154-48-5	TRANS-1, 2-DICHLORGETHENE .	120. U	106-10-1 4-RETHYL-2-PENTANCHE		240.	ប
47-44-3	CHLOROFORN	129. U	\$41-78-4 2-HEXANONE		240.	U
107-04-2	1. 2-DICHLOROETHANE	120. U	127-18-4 TETRACHLORGETHENE		120.	v
78-43-1	2-BUTANONE	240. 1	74-34-6 1, 1, 2, 2-TETRACHLOROETHAN	E	24#.	U
71-55-4	1,1,1-TRICHLORDETHANE	120. U	198-88-3 TOLUENE	. \$.344.	
54-23-5	CARBON TETRACHLORIDE	120. U	108-90-7 CHLOROSENZENE	•	120.	U
148-45-4	VINYL ACETATE	240. U	100-01-4 ETHYLSENCENE		129.	U
75-27-4	IRONODICHLOROMETHANE	120. U	198-42-5 STYRENE		120.	ų
			TOTAL XVLENES		128.	U

B - COMPOUND WAS DETECTED IN THE OC BLANK.

J - REPORTED VALUE IS LESS THAN THE DETECTION LINIT.

U - COMPOUND ANALYZED FOR BUT NOT DETECTED. THE REPORTED VALUE IS THE MENIMUM ATTAINABLE DETECTION LIMIT FOR The Sample.

SEE PAGE 1A FOR COMPLETE DEFINITIONS OF THE DATA REPORTING BUALIFIERS.

FORM I

CASE NO: CHICEPASCOS : 142724 . t 1 DRGANICS AMALYSIS DATA SHEET (PAGE 2) SEMIVOLATILE COMPOUNDS CONCENTRATION: GRC CLEANUP X YES LOW MO DATE EXTRACTED/PREPARED: 11/21/86 SEPARATORY FUNNEL EXTRACTION VES DATE ANALYZED: #1/27/87 CONTINUOUS LIBUID-LIBUID EXTRACTION YES CONCIDIL FACTOR: 1. PERCENT HOISTURE: (DECANTED) (1.0 CAS MINEER UG/NG CAS NUMBER UG/K6 ACENAPHTHENE 148-75-2 PHENOL 850, U 83-32-7 2.4-DINITROPHENOL #IS(2-CHLOROETHYL)ETHER . #S4. U 111-44-4 \$1-28-5 *5-57-8 144-42-7 1. 3-DICHLOROBENZENE \$41-73-1 132-44-7 104-44-7 1,4-DICHLOROBENZENE . . . #50. U 121-14-2 108-51-4 BENZYL ALCOHOL 484-28-Z 2.6-DINITROTOLUERE 850. U 1.2-OICHLORDBENZENE . . . 854. U 95-50-1 84-66-2 95-6#-7 2-HETHYLPHENGL 7845-72-3 4-CHLOROPHENYL-PHENYLETHER \$50. U 19438-32-4 BIS(2-CHLOROISOPROPYL)ETHER BS4. U \$4-73-7 104-14-5 100-10-6 471-44-7 N-NITROSO-GI-N-PROFYLANINE 450. U 516-52-1 4.4-DINITRO-2-HETHYLPHENOL 4104. U 67-72-1 HEXACHLOROETHANE 86-28-6 N-WITROSODIPHENVLAHINE (1) 854. U 98-95-3 141-55-3 4-BRONOPHENVL-PHENVLETHER 854. U 78-59-1 118-74-1 HEXACHLOROSEHZENE ##-75-5 87-84-5 PENTACHLOROPHENOL 2.4-DINETHYLPHENOL 105-47-9 15-01-8 45-85-0 128-12-7 #IS(2-CHLOROETHOKY)METHANE 854. U DI-N-SUTYLPHTHALATE . . . 856. SU 111-91-1 84-74-2 2.4-DICHLOROPHENOL 129-83-2 7****** 129-82-1 1,2,4-TRICHLORDSENZENE . . 850. U 127-00-0 BUTYLBENZYLPHTHALATE . . . 850. U *1-2#-3 45-48-7 184-47-8 A-CHLORDANILINE 11-94-1 3.3"-DICHLORDBENZIDINE . . 1780. U HEXACHLOROBUTADIENE . . . 850. U 27-52-3 54-55-3 \$9-58-7 4-CHLORO-3-HETHYLPHENOL . SEG. U #IS(2-ETHYLHEXYL)PHTHALATE #600. 117-81-7 ¥1-57-4 2-METHYLNAPHTHALENE . . . 850. U 218-41-9 DI-N-OCTYL PHTHALATE . . . 2000. 77-47-4 HEXACHLOROCYCLOPENTAGIENE #50. U 117-84-0 2.4.6-TRICHLOROPHENOL . . #S4. U BENZO (1) FLUORANTHENE #9-44-2 295-99-2 2.4. S-TRICHLOROPHENGL . . 6100. U SENZO(K)FLUGRANTHENE ***** 247-48-7 91-59-7 2-CHLORONAPHTHALENE . . . 850. U 54-32-8 88-74-4 193-39-5 INDENO(1.2, 3-CD)FYRENE . . 894. 1 71 - 1 1 - 7 DIBENZ(A,H)ANTHRACENE . . #24. J 208-94-8 171-24-2 BENZO(5,H,I)PERYLENE . . . 1100. 77-47-2 3-NITROANILINE 4100. U

(1) - CANNOT BE SEPARATED FROM DIPHENYLAMINE

FORM I

Sediment Data: Volatile Organics

In RAP Area Streams

I SAMPLE MUNICE !

Laboratory Name THER.B. Inc.

Organics Analysis Data Sheet (Page 3)

Pesticide/PC8s

Concentration.	Medium	(Circle One)
Date Extracted 'Prepared:		
Date Analyzed:		2-24-17
Conc/Dil Factor:		<u> </u>
Percent Moisture (decante	d)	<u> </u>

GPC Cleanup EYes ONo Separatory Funnel Extraction GYes Continuous Liquid - Liquid Extraction CYes

Sample Number

162924

CAS Number		ug/lo(¡Circi	
319-84-6	Alpha-BHC	121	υ
319-85-7	Beta-BHC	21	υ
319-86-8	Detta-8HC	21	υ
58-89-9	Gemma-BHC (Lindane)	21	υ
78-44-8	Heptachior	21	υ
309-00-2	Aigen	21	υ
1024-57-3	Megiachior Epoxide	21	υ
959-98-8	Endosulfan i	21	υ
60-57-1	Cieldrin	42	υ
72-55-9	4. 4'-0DE	42	υ
72-20-8	Enonn	42	υ
33213-65-9	Endosultan II	42	υ
72-54-8	4, 4'-000	42	U
1031-07-8	Endosulfan Sulfate	42	U
50-29-3	4, 4'-0DT	42	V
72-43-5	Mesnozychior	210	Ų
53494-70-5	Endrin Kelone	42	υ
57-74-9	Chiordane	210	υ
3001-35-2	Toxaonene	420	U
2574-11-2	Aroctor-1016	210	ປ
1104-28-2	Aracior+1221	210	U
1141-16-5	Arocier-1232	مىر	U
53469-21-9	Aroctor-1242	210	U
2672-29-6	Arocior-1248	240	U
1097-69-1	Arocior-1254	420	υ
1096-82-5	Arocior-1250	420	J
	MINY	42	ц

V₁ * Volume of extract injected (ui)

V_e * Volume of water extracted (mi)

W_g * Weight of sample extracted (g)

V, * Volume of total extract (ui)

<u> 1000 Nu vi 3.0 Mu</u>

129

DRY WT.

AT CHARMY ST. BRIDGE

HAUMER RIVER

rem 4.9

ORBANICE ANALYSIS DATA SHEET

(PAGE 1) LABORATORY NAME: TNA/ERS CASE NO: ASO28 LAB SAMPLE ID NO: VIA2723R3 SC REPORT NO: SAMPLE MATRIX: SOIL DATA RELEASE AUTHORIZED SY: CAOPA CL H-OLOUDTATE SAMPLE RECEIVED: 11/34/86

VOLATILE COMPOUNDS

	CONCENTRATION Bate Entracte Date Analyzed Conc/dil Pact	D/PREPARE 11 'OR:	LOW D: 11/21/84 11/21/86 1.	PH 7.83	
	PERCENT HOIST	URE: INOT	DECANTED	55. •	
		UG/KE	CAS HUMBER		1067KB
74-47-3	CHLOROMETHANE	22. U	78-87-5	1.2-DICHLOROPROPANE	11. U
74-83-4	BRONOMETHANE	22. U	10061-02-6	TRANS-1. 3-DICHLOROPROENE	11. U
75-01-4	VINVL CHLORIDE	22. U	79-01-0	TRICHLOROETHENE	11. 1
75	CHLOROETHANE	22. U	124-48-1	DISTONOCHLOROMETHANK	11. U
75-++-2	NETHVLENE CHLORIDE	\$1. 8	79-00-5	1. 1. 2-TRICHLORGETHANE	11. U
67-64-1	ACETOME	-44,	71-43-2	BENZENE	11. U
75-15-0	CAREON DISULFIDE	11. U	10041-01-5	CIS-1. 3-DICHLORDFROFENE	11. U
75-35-4	1. 1-SICHLORGETHENE	11. U	110-75-8	2-CHLOROCTHYLVINYLETHER	22. U
75-35-3	1.1-DICHLORDETHANE	11. U	75-25-2	BROHOFORM	11. 1
154-40-8	TRANS-1. 2-DICHLOROETHENE	11. U	108-10-1	4-HETHYL-2-PENTANONE	22. U
17-11-»	CHLOROFORM	11. U	871-78-6	2-HEMANONE	22. 1
107-06-2	1.2-DICHLORGETHANE	11. U	127-18-4	TETRACHLOROETHENE	11. 0
78-++33	2-BUTANONE	22. U	74-34-5	1. 1. 2. 2-TETRACHLOROETHANE	22. 0
71-55-4	1.1.1-TRICHLOROETHANE	11. U	108-58-1	TOLUENE	11. U
\$4-23-5	CARBON TETRACHLORIDE	11. U	108-99-7	CHLORDSENZENE	11. 11
148-45-4	VINYL ACETATE	22. U	189-41-4	ETHYLSERZENE	11. 0
75-27-4	BRONGOZCHLOROHETHANE	11. U	144-42-5	STYRENE	11. U
			1	TOTAL KYLENES	11. U

B - COMPOUND WAS DETECTED IN THE OC PLANK.

U - COMPOUND ANALYZED FOR BUT NOT DETECTED. THE REPORTED VALUE IS THE MINIMUM ATTAINABLE DETECTION LIMIT FOR THE SAMPLE.

SEE PAGE 1A FOR COMPLETE DEFINITIONS OF THE DATA Reporting qualifiers.

FORM I

LABORATORY NAME: THA/ERS CASE NO: OHIOPASAIS

ORGANICS ANALYSIS DATA SHEET (PAGE 2)

I SAMPLE MUMBER 1

ŧ

ŧ

ŧ

1 162723

£.

SEMIVOLATILE COMPOUNDS

CONCENTRAL	FION: LOW		OPC CLEA	HUP X YES NO	·······
DATE EXTRA	ACTED/PREPARED: 11/21/84		SEPARATO	RY FUNKEL EXTRACTION	YES
BATE AMALI	YZED: 01/27/87		CONTINUO	US LIBUID-LIQUID EXTRAC	TION YES
CONC/DIL P	ACTOR: S.				
PERCENT IN	DESTURE: (DECANTED) 55.0				
	R	UG/KG	CAS NUMBER	i	VG/KS
108-75-2	PHENOL	730. U	#3-32-7	ACENAPHTHENE	1400.
111-44-4	BIS(2-CHLOROETHYL)ETHER .	730. U	\$1-28-5	2.4-DINITROPHENOL	3400. U
95-67-6	2-CHLOROPHENOL	730. U	100-02-7	4-NITROPHENOL	3400. U
		W200 H	138-14-8		

75-67-6	_ 2-CHLOROPHENOL 730. U	100-02-7	4-NITROPHENOL 3444. U
\$41-73-1	1,3-01CHLOROSENZENE 730. U	132-44-7	DIBENZOFURAN
\$# 6~46~ 7	1.4-BICHLOROSENZENE 730. U	121-14-2	2-4-01NITROTOLUENE 730. U
149-51-6	BENZYL ALCOHOL 739. U	494-29-2	2-6-DINITROTOLUENE 730. U
? 5-5+-1	1.2-DICHLOROBENZENE 730. U	24-44-2	DIETHYLPHTHALATE 730. BU
95-48-7	2-HETHYLPHENOL 730. U	7445-72-3	4-CHLOROPHENYL-PHENYLETHER 730. U
37438-32-9	F BIS(2-CHLOROISOPROPYL)ETHER 730. U	84-73-7	FLUCRENE
184-44-5	4-RETRYLPHENOL 739. U	500-10-6	4-HITROANILINE 3400. U
421-44-7	N-NITROSO-DI-N-PROPYLANINE 730. U	\$24-\$2-1	4-4-DINITRO-2-RETHYLPHENOL 3444. U
47-72-L	HEXACHLOROETHANE 730. U	86-30-6	N-NITROSOBIPHENYLANINE (1) 730. U
--*	NITROBUNZERE 730, U	141-53-3	4-BROHOPHENYL-PHENYLETHER 730. U
78-59-1	ISOPHORONE 730. U	118-74-1	HEXACHLOROBENZENE 730. U
88-75-5	2-NITROPHENOL 730. U	*7-**-5	PENTACHLOROPHENOL 3444. U
145-47-9	2.4-03HETHYLPHENGL 730. U	85-01-8	PHENANTHRENE
45-85-8	SENZOIC ACID 3640. U	120-12-7	ANTHRACENE
\$11-71-1	BIS(2-CHLOROETHOXY)HETHANE 738. U	84-74-2	BI-N-BUTYLPHTHALATE 940. B
120-23-2	2.4-SICHLOROPHENOL 730. U	2#4-44-#	FLUGRANTHENE
120-82-1	1.2.4-TRICHLOROBENZENE 730. U	127-44-4	PYRENE
71-28-3	HAPHTHALERE	\$2-48-7	BUTYLBENZYLPHTHALATE 730. U
184-47-8	4-CHLORDANILINE 730. U	<u> *1-74-1</u>	3.3"-DICHLOROBENZIDINE 1500. U
87-48-3	HEXACHLOROBUTADIENE 730. U	54-55-3	BENZD (A) ANTHRACENE
57-54-7	4-CHLORD-3-HETHYLPHENOL . 730. U	117-81-7	BIS(2-ETHYLHEXYL)PHTHALATE 1100. B
*1-57-4	2-HETHYLNAPHTHALENE 770.	218-+1-7	CHRYSENE
77-47-4	HEXACHLOROCYCLOPENTABIENE 730. U	117-84-#	DI-H-OCTYL PHTHALATE 730. U
--2	2.4.4-TRICHLOROPHENDL 730. U	2+5-77-2	BENZG(BIFLUGRANTHENE 1940.
75-75-4	2.4.8-TRICHLOROFHENOL 3440. U	287-48-4	BENZO(K)FLUORANTHENE 2500.
91-58-7	2-CHLORONAPHTNALENE 730. U	54-32-8	BENZQ(A)PYRENE
88-74-4	2-NITHGANILINE	193-39-5	INDEND(1,2,3~CD)PYRENE 1544.
131-11-3	DIHETHYL PHTHALATE 730. U	\$3-74-3	DIBENZ(A.H)ANTHRACENE 970.
2##~74~#	ACENAPHTHYLENE 730. U	171-24-2	BENZO(G.H.I)PERYLENE 1800.
--2	3-HITROAHILINE 3400. U		

(1) - CANNOT BE SEPARATED FROM DIPHENYLARINE

FORM S

Laboratory Name THE ERG, Inc. 080A A5035 Case No.

Organics Analysis Data Sheet (Page 3)

Semple Number |{2923

Pesticide/PC8s

resucide/ PCBs

	Concentration. Low Medi	ium (Circle One)
,	Dete Extracted / Prepared:	11-21-84
	Date Analyzed:	2-24-87
	Conc/Dil Factor:	· · · · · · · · · · · · · · · · · · ·
	Percent Moisture (decented)	55

GPC Cleanup Eyes ONo
Separatory Funnel Extraction CIYes
Continuous Liquid - Liquid Extraction @Yes

CAS		ug/len	g/X
Number		Circle	UN
319-84-6	Alone-BHC	18	υ
319-85-7	Beta-BHC	18	U
319-86-8	Dens-8MC	18	V
58-89-9	Gamma-BHC (Lindane)	18	U
76-44-8	Heptachlor	18	U
309-00-2	Aldrin	18	υ
1024-57-1	Heptechlor Epoxide	18	U
959-98-8	Endosulfan I	18	υ
60-57-1	Öreidrin	36	U
72-55-9	4. 4"-0DE	36	υ
72-20-6	Enarin	36	υ
33213-65-9	Engasultan II	36	ΰ
72-54-6	4, 4'-000	36	υ
1031-07-8	Endosulfan Sulfate	36	υ
50-29-3	4. 4'-00T	34	U
72-43-5	Methoxychior	180	υ
53494-70-5	Engrin Ketone	36	U
57.74.9	Chiordane	180	υ
8001-35-2	Toxeonene	360	U
12674-11-2	Aroctor-1016	180	U
11104-28-2	Arocior-1221	180	v.
11141-16-5	Arocior-1232	180	U
53469-21-9	Arocior-1242	180	ΰ
12672-29-6	Arocior-1248	180	υ
11097-69-1	Arocior-1254	360	U
11096-82-5	Arocior-1260	360	U
	Mirch	36	ų

V = * Volume of extract injected suit

V_e + Volume of water extracted (mi)

W_s • Weight of sample extracted (g)

149

DRY WT.

V₁ + Volume of total extract (ui)

Jac 0001

3.0.

Sediment Data: Volatile Organics

In RAP Area Streams

BENZO(K)FLUORANTHENE . . 784. U

INDENG(1.2.3-CD) PYRENE . . 754. U

DIBENZIA.H)ANTHRACENE . . 754. U

SENZO(G.H.I)PERYLENE . . . 784. U -

MAUMOE RUER_	RM 1.4	LABORATORY NAME: THAJ ers Case Mo:	t SANPLE NUMBER I I SARPEE I
	: SAMPLE MUMBER 1 1	ORGANICS ANALYSIS BA (PASE 2)	TA SHEET
	DREAMICS ANALYSIS DATA SHEET	SEMIVOLATILE COMP	OUNDS
LABDRATORY HAME: THA/ERS LAB SAMPLE ID NG: V5627228 SAMPLE NATRIX: SOIL DATA RELEASE AUTHORIZED BY	CASE NO: ASOJS AC REPORT NO: CONTRACT NO:	DATE EXTRACTED/PREPARED: 11/21/84 SEPAR	LEANUP X YES NO LATORY FUNHEL EXTRACTION YES INVOUS LIBUID-LIBUID EXTRACTION YES
CONCENT	VOLATILE COMPOUNDS	CAS NUMBER US/NG CAS NUM	
	MACTED/PREPARED: 11/19/84	188—95—2 PHENOL	2,4-01NITROPHENOL 3400. U
CONC FAC		95—57—8 2-CHLOROPHENGL	• DIBENZOFURAN
		100-51-6 BENZYL ALCONOL 750. U 404-20-	2 2.4-DINITROTOLUENE 756. U
CAS HUMBER 74-87-3 Chidronethane	US/KG CAS NUMBER ' US/KS 		
74-83-4 BROKONETHANE		93-48-7 2-METHYLPHENGL 759. U 7893-72 29438-32-9 825(2-CHLOROISOPROPYL)ETHER 759. U 84-73-7	
75-01-4 VINYL CHLORIDE		184-64-6 4-HETHYLPHENG 750. U 100-10-	
75-00-3 CHLOROETHANE		421-44-7 N-NITROSO-SI-N-PROPVLANINE 784. U \$34-52-	
78-47-2 HETHYLENE CHLORIDE .		47-72-1 HEXACHLOROETHAME 750. U 84-30-6	N-HITROSODIPHENYLAHINE (1) 784. U
47-64-1 ACETONE	8.6.3 71-43-2 SENZEME	98-95-3 HITROSENZENE	3 6-BROHOPHENYL-PHENYLETHER 750. U
75-15-0 CARBON DISULFIDE		78-59-1 ISDPHORONE	1 NEXACHLOROSENZENE 754. U
75-35-4 1.1-DICHLORDETHENE .		88-75-5 2-HITROPHEND	PENTACHLOROPHENDL
71-35-3 1.1-01CHLOROETHANE .	11 U 75-25-2 BROHOFORM	105-47-7 2.4-DINETHYLPHENOL	PHENANTHRENE
154-40-6 TRANS-1, 2-DICHLORGETH	DHE . 11. U 148-10-1 4-HETHYL-2-PENYAHONE 22. U	AK-85-0 BENZOIC ACID	
67-66-3 CHLOROFORN	11. U SV1-78-6 2-HEXANONE	111-71-1 #IS(2-CHLORDETHOXY)HETHANE 754. U #4-74-2	
107-06-2 1,2-SICHLORDETHANE .	11. U 127-18-4 TETRACHLORDETHENE 11. U	126-83-2 2.4-61CHLOROPHENOL 754. U 244-44-	
78-43-3 2-8UTANONE	22. U 79-34-E 1.1.2.2-TETRACH_DROETHANE 22. U	120-02-1 1.2.4-TRICHLORDBENZENE 758. U 129-00-	
71-58-6 1.1.1-TRICHLORDETNANE	. 11. U 108-88-3 TOLUENE	91-26-3 NAPHTHALENE	
54-23-5 CARBON TETRACHLORIDE		106-47-8 4-CHLORGANILIKE 750. U 91-94-1	
108-05-4 VINYL ACETATE	22. U 100-41-6 ETHYLSENZENE	\$7-68-3 HEXACHLORDBUTADIENE 750- U \$6-55-3	
75-27-4 BROHODICHLOROHETHAKE	11. U 100-42-5 STYRENE	59-50-7 4-CHLORO-3-HETHYLPHENOL . 750. U 117-81-	
	TOTAL XYLENES	71-57-6 2-HETHYLNAPHTHALENE 750. U 218-01-	
		77-47-4 HEXACHLOROCYCLOPENTADIENE 750. U 117-84-	· · · · · · · · · · · · · · · · · · ·
		8 8-84-2 2,4,4-TRICHLORDPHENOL . 758. U 285-99-	
			• AFN70(K)FLUORANTHENE 750. U

75-73-4

+1-58-7

\$8-74-4

131-11-3

208-74-8

99-09-2

8 - COMPOUND WAS DETECTED IN THE &C BLANK.

J - REPORTED VALUE IS LESS THAN THE DETECTION LINIT.

U - COMPOUND AMALYZED FOR BUT NOT DETECTED. THE REPORTED VALUE IS THE HININGH ATTAINABLE DETECTION LINIT FOR THE SANPLE.

SEE PAGE 1A FOR COMPLETE DEFINITIONS OF THE DATA REPORTING BUALIFIERS.

FORM I

(1) - CANNOT BE SEPARATED FROM DIPHENYLANINE

2.4.8-TRICHLOROPHENOL . . 3400. U

DIMETHYL PHTHALATE . . . 750. U

ACENAPHTHYLENE 750. U

2-CHLORDNAPHTHALENE . . . 750. U

FORN-1

207-08-7

54-32-8

192-39-5

\$3-78-3

191-24-2

Sediment Data: Volatile Organics In RAP Area Streams

Page No. A-5

LADOFATORY NAME THE ERG. INC.

Organics Analysis Data Sheet (Page 3)

Pesticide/PC8s

Concentration. (ow) Medius	
Dete Extracted / Prepared:	11-21-86
Date Analyzed:	2-24-87
Conc/Dil Fector:	· · · · · · · · · · · · · · · · · · ·
Bernant Marchies (destated)	56

GPC Cleanup GYes CNo Separatory Funnel Extraction CIYes Continuous Liquid - Liquid Extraction CiYes

Sample Number

62922

الىرە.3

CAS Number		ug/lanug/X (Circle Off
319-84-6	Alona-SHC	1 18 0
319-85-7	Beta-EHC	18 0
319-86-8	Dena-BHC	18 0
68-89-1	Gamme-SHC (Lindane)	18 0
78-44-8	Heotechior	18 0
309-00-2	Aldrin	18 U
1024-57-3	Heptachior Epoxide	18 U
959-98-8	Encosultan i	18 0
60-57-1	Diekann	36 0
72-55-9	4. 4'-0DE	36 0
72-20-8	Endmin	36 0
33213-65-9	Endosullan I	36 0
72-54-8	4, 4-000	36 0
1031-07-8	Endosulfan Sulfate	36 0
50-29-1	4 4'-00T	36 U
72-13-5	Methozychior	180 0
53494-70-5	Engrin Ketone	36 U
57-74-9	Chierdane	180 0
8001-35-2	Taxegnene	360 0
12574-11-2	Arector-1016	180 U
11104-28-2	Arocior-1221	180 0
11141-16-5	Arocion-1232	180 0
53469-21-9	Aroctor-1242	180 0
12672-29-6	Arocior-1248	180 0
11097-69-1	Arocior-1254	360 U
11096-82-5	Aroctor-1250	360 0
	Mirex	36 U
Υ,	* Volume of extract injecte	d (gil

Vs + Volume of water extracted (mil-

W_a + Weight of sample exited (g)

للبر 1000

V₁ * Volume of total extract (uil

13.

DRY WT.

AT STICKNEY AND I SAMPLE NUMBER I 1 1 VI62930R ORGANICS ANALYSIS DATA SHEET PAGE 1) LABORATORY NAME: CASE NO: THA/ERS A5 035 LAR SAMPLE ID HO: V/62430 K OC REPORT NO: SANPLE MATRIX: SOIL CONTRACT NO: DATA RELEASE AUTHORIZED BY: â VALOATE SAMPLE RECEIVER: 11/14/84

RM 4.9

VOLATILE COMPOUNDS

CONCENTRATION:	LOW		
DATE EXTRACTED/PREPARED:	11/19/84		
DATE ANALYZED:	11/17/86		
CONC FACTOR:	1. 023541	PH	7.74
PERCENT HOISTURE: (NOT D	ECANTED }	34. 0	

	A	U5/K6		1	116776
74-87-3	CHLOROMETHANE	15. U	78-87-5	1.2-DICHLOROPROPANE	7, 44
74-83-9	BROMONETHANE	15. U	10961-02-6		7.40
75-01-4	VINYL CHLORIDE	15. V	79-01-4	TRICHLOROETHENE	7.40
75-00-3	CHLOROETHANE	15. U	124-48-1	DIBROHOCHLOROMETHANE	7.41
75-07-2	HETHYLENE CHLORIDE	14. B	79-44-5	1. 1. 2-TRICHLOROETHAME	7.40
47-44-1	ACETONE	15. 5	71-41-2	IENZENE	7.45
75-15-0	CARSON SISULFIDE	7.44	10041-01-5	CIS-1. 3-DICHLOROPROPENE	7.40
75354	1.1-DICHLORDKTHEME	7. 4U	110-75-8	2-CHLOROETHYLVINYLETHER	15. U
78-25-3	1.1-DICHLORDETHANE	7. 4U	75-25-2	BRONOFORM	7.40
154-40-5	TRANS-1.2+DICHLOROZTHERE .	7.40	100-10-1	S-RETHYL-2-PENTANONE	15. U
67-66-3	CHLOROFORM	7.49	371-78-4	2-HEXANONE	18. U
1+7-44-2	1.2-DICHLOROETHANE	7.40	127-18-4	TETRACHLOROETHENE	7.40
78-93-3	2-BUTANONE	15. 9	79-34-5	1.1.2.2-TETRACHLORGETHANE	15. U
71-\$5-6	1.1.1-TRICHLOROETHANE	7.40	148-88-3	TOLUENE	7.40
\$4-23-5	CARBON TETRACHLORIDE	7.40	148-98-7	CHLOROBENZENE	7, 44
108-05-6	VINVL ACETATE	15. U	100-41-4	ETHYL BENZENE .	7.40
75-27-4	ERCHODICHLOROMETHANE	7.40	100-42-5	STYRENE	7.40
				TOTAL XYLENES	7. 4U

8 - COMPOUND WAS DETECTED IN THE &C BLANK.

OTTAWA RIVER

U - CONFOUND ANALYZED FOR BUT NOT DETECTED. THE REFORTED VALUE IS THE HININUM ATTAINABLE DETECTION LINIT FOR THE SAMPLE.

SEE PAGE 1A FOR CONFLETE DEFINITIONS OF THE DATA Reporting gualifiers.

FORM I

LABORATORY NAME: THA/ERG CASE MO: CHICEPAS#35 I SAMPLE MUNISER I 1 142730 t 1

ORGANICS ANALYSIS DATA SHEET (PAGE 2)

SEMIVOLATILE COMPOUNDS

CONCENTRATION:	LOW	SPC CLEANUP X YES HO	
DATE EXTRACTED/PREPARED:	11/21/84	SEPARATORY FUNNEL EXTRACTION YES	
BATE ANALYZED:	02/03/87	CONTINUOUS LIBUID-LIBUID EXTRACTION	YES
DIL FACTOR:	2. ***		
PERCENT HOISTURE: (DECAN	TED) 34.0		

CAS MUMPER	UG/KS	CAS NUMBER	UG/KE
108-45-2 PHENOL	·. 1999. U	83-32-4 ACENAPHTHEME	330. J
111-44-4 BIS(2-CHLORDETHYL)ETHER	. 1948. U	S1-28-S 2.4-DINITEOPHENOL	4844. U
95-57-8 2-CHLOROPHENOL	. 1000. U	100-02-7 4-HITROPHENOL	, , 4840. U
\$41-72-1 1.3-DICHLOROBENZENE	. 1899, U	132-44-9 DIBENZOFVRAN	240. J
104-44-7 1.4-DICHLOROBENZENE	. 1000. U	121-14-2 2.4-DINITROTOLVENE	1999. U
100-51-6 BENZYL ALCOHOL	. 1888. U	404-20-2 2.4-SINITROTOLUENE	1000. U
45-50-1 1,2-DICHLOROBENZENE	. 1000, U	84-44-2 DIETHYLPHTHALATE	1999. 30
95-40-7 2-HETHYLPHENOL	. 1989, U	7005-72-3 4-CHLOROPHENYL-PHENYLET	HER 1949. U
39438-32-9 BIS(2-CHLOROISOPROPVL)ETH	ER1000. U	64-73-7 FLUGRENE	476. J
104-64-5 6-HETHYLPHENOL	. 1000. U	100-10-6 A-HITROAMILINE	4889. U
421-44-7 N-HITROSO-01-H-PROFYLAMIN	IE 1968, U	B34-62-1 4.4-DINITRO-2-METHYLPHE	NOL 4800. U
47-72-1 HEXACHLOROETHANE	. 1000. U	86-30-6 H-HITROSOCIPHENVLAMINE	(1) 1 000 , U
TR-TS-3 NITROBENZENE	. 1000. U	101-55-3 4-BRONOPHENYL-PHENYLETH	EN 1440. U
78-59-1 ISOPHORONE	. 1969, 3	118-74-1 HEXACHLOROBENZENE	., 1000.ÿ
BR-75-5 2-NITROPHENOL	. 1999. U	87-84-5 PENTACHLOROPHENOL	4849. 12
105-67-7 2.4-DEHETHYLPHENDL	. 1000. U	#S-#1-# PHENANTHRENE	4100.
AS-85-8 BENZOIC ACID	. 4800. U	120-12-7 ANTHRACENE	870. BJ
111-41-1 BIS (2-CHLORGETHOXY)METHAN		84-74-2 DI-H-BUTYLPHTHALATE	. , 1000. 30
128-81-2 2.4-0ICHLÖROFHENDL	. 1000. U	204-44-0 FLUGRANTHENE	\$699:
120-02-1 1.2.4-TRICHLOROBERZENE .	. 1000. U	127-88-0 PYREME	4999:
T1-28-3 HAPHTHALENE	. 230. HJ	85-68-7 BUTYLEENZYLPHTHALATE	4399.
106-67-8 4-CHLORDANILINE		91-94-1 3.3"-DICHLOROSENZIBINE .	
87-48-3 HEXACHLOROBUTADIENE		SA-SS-3 BENZD(A)ANTHRACENE	3284."
ST-SO-7 A-CHLORO-3-METHYLPHENOL		117-81-7 815(2-ETHYLHER(VL)PHTHAL	ATE 14040.8
₹1-87-4 2-нетнуімарнуна⊥ене	. 1000. U	218-01-7 CHRYSENE	2899.
77-47-4 HEXACHLOROCYCLOPENTADIENE		117-84-0 DI-H-OCTVL PHTHALATE	3600.
	. 1000, U	205-77-2 SENZO(B)FLUORANTHENE	., 1000, U
45-45-4 2.4.5-TRICHLOROPKENOL .		207-08-4 EENZO(K)FLUGRANTHENE	
71-58-7 2-CHLORONAPHTHALENE		\$\$+32+8 \$EN20(A)PYRENE	
88-74-4 2-HITRDANILINE	. 4800, U	173-37-5 INDEND(1.2, 3-CD)PYRENE .	1744.
131-11-3 DIMETHYL PHTHALATE	. 1800. U	\$3-70-3 DIBENZ (A. H) ANTHRACENE .	
208-76-8 ACENAPHTHYLENE	. 100.J	141-24-2 \$EN20(G.H.1)PERVLENE	. 1844.
47-07-2]-HITROANILINE	. 4800. V		

(1) - CANNOT BE SEPARATED FROM DIPHENVLAMINE

FORM I

Laboratory Name: THAVERG, Inc. Sample Numbe DEPA ASOSS Case No ... 162930 **Organics Analysis Data Sheet.** (Page 3) Pesticide/PC8s Concentration. 6 GPC Cleanup @Yes CiNo (Circle One) Medium 11-21-86 Date Extracted /Prepared: Separatory Funnel Extraction CIYes 1-24-87 Date Analyzed: _ ----1 Conc/Dil Factor:

34

Percent Moisture (decented) .

Continuous Liquid - Liquid Extraction CYas

CAS Number	: ;	ug/le(u (Circii	
319-84-6	Alpha-8HC	12	U
319-85-7	Beta-BHC	12	υ
319-86-8	Dena-8HC	12	U
58-89-9	Gamma-8HC (Lindane)	12	υ
78-44-8	Hestactilor	12	U
309-00-2	Aldrin	12	U
1024-57-1	Hestachior Epsade	12	υ
959-98-8	Endosultan I	12	U
60-57-1	Dieidrin .	24	U
72-55-9	4: 4'-00E	24	U
72-20-8	Engrin	24	υ
33213-65-9	Endosultan d	24	U
72-54-8	4, 4'-000	24	U
1031-07-8	Endosultan Sulfate	24	υ
50-29-3	4 4'-ODT	24	υ
72-43-5	Methozychior	120	U
53494-70-5	Endrin Ketone	24	υ
57-74-3	Chiordane	120	Ų
8001-35-2	Tozaphene	240	Ų
12674-11-2	Arocior-1015	120	υ
11104-28-2	Arocier-1221	120	υ
11141-16-5	Aroctor-1232	120	υ
53469-21-9	Arocior+1242	2500	
12672-29-6	Arocior-1248	120	υ
11097-69-1	Arocior-1254	240	U
1096-82-5	Aroctor-1250	240	U
	Minta	24	u

V + Volume of extract injected, uil

Ve. * Volume of water extracted imit

1000 -

W. * Weight of sample extracted igj

V₁ * Volume of total extract (ui)

200

DRY WT.

Sediment Data: Volatile Organics In RAP Area Streams

ATTANA RIVER AM 6.4 .	LABORATORY NAME: THA/ERS I SAMPLE NUMBER 1 CASE NO: 5035 I 142727 I
I SAMPLE MUMEER 1 I I VIC2129 R2 1	GRGANICS ANALYSIS DATA SHEET ((PAGE 2)
ORBANICE AMALYSIS BATA SHEET (PARE 1)	SERIVOLATILE CONFOUNDS
LABORATORY NAME: TNA/ERG CASE NO: AS075	
LAB SAMPLE ID NO: VSA272782 CONTRACT NO: SAMPLE NATRIX: SOIL DATA RELEASE AUTHORIZED BY CONOCHOL AND	CONCENTRATION: LOW SPC CLEANUP X YES NO DATE EXTRACTED/PREPARED: 11/21/84 SEPARATORY FURMEL EXTRACTION YES DATE ANALYZED: \$1/23/87 CONTINUOUS LIQUID-LIQUID EXTRACTION YES CONC/DIL FACTOR: 1. PERCENT MOZSTURE: (GECANTED) 35.0
	CAS NUMBER US/KS CAS NUMBER US/KS
CONCENTRATION: LOW Date Extracted/Prepared: 11/14/84 Date Analyzed: 11/14/84 Conc Pactor: 1.936126 PM 7.55 Percent Roisture: (NGT Decanted) 35.0	100-75-2 PHENOL
	106-64-7 1.6-DICHLOROBENZENE \$10. U 121-14-2 2.4-DINITROTOLUENE 510. U
CAS NUMBER UG/KE UG/KE UG/KE UG/KE 15. U 78-87-5 1.2-03CHL020PR0PANE 7.4U	100+51-6 BENZYL ALCOHOL \$10. U 406-20-2 2,4-03NITROTOLUENE \$10. U
	95—58—1 1.2-DICHLOROBENZEME , , \$10.U 86—66—2 DIETHYLPHTHALATE , , , , \$10.BU 95—68—7 2—Hethylphenkl, , , , , \$10.U 7005—72—3 6—Chlorophenyl—PhenylEther 510.U
74-83-9 BROHOMETHANE	95—68—7 2—HETHYLPHEMOL
75-00-3 CHIGAGETHANE	JYSJS-JE-V SIALS-LUNUSUFAUFAUFAUFAUFAUFAUFAUFAUFAUFAUFAUFAUFAU
73-00-2 HEINVLENE CHLORIDE 54. 8 70-00-5 1,3.2-TRICHLOROSTNAME 7.4U	421-44-7 H-HITADIG-92-N-FROPLANING \$10. U 534-52-1 4.4-DINITRG-2-METHYLPHENOL 2500. U
47-44-1 ACTIONE	47-77-1 HENACHLORGETHANE SIG. U SA-30-4 N-NITROSODIPHENYLANINE (1) S10. U
75-15-0 CARBON DISULFIDE	THE TAT A STATEME
75-35-4 1.1-03CHLOROETHENE 7.4U 110-75-8 2-CHLOROETHYLVINYLETHER . 15. U	78-57-1 ISOPHOROME
75-35-3 1.1-01CHLOROSTHAME 7.4U 75-25-2 SKOHOFORM 7.4U	88-73-5 2-HITROPHENGL
154-40-5 TRANS-1, 2-51550000ETHENE . 7.4U 168-10-1 4-HETHYL-R-PENTAHONE 15. U	145-67-9 2,6-03HETHYLPHENGL \$14. U 85-61-8 PHENANTHRENE
57-66-3 CH.CROFORM	45-85-0 BENZOIC ACID 2500. U 120-12-7 ANTHRACEME
187-64-2 1.2-DICHLORDETHANE 7.40 127-18-4 TETRACHLORDETHENE 7.40	111+41-1 BIS(2-CHLOROETHOXY)XETHANE \$10. U \$4-74-2 DI-N-BUTYLPHTHALATE \$10. BU
79-93-3 2-8UTAHONG	120-03-2 2.4-01CHLOROPHENCL \$10. U 206-44-0 FLUORANTHEME
71-55-6 1.1.1-TRICHLOROETHANE 7.40 100-00-3 TOLUENE 7.40	128-82-1 1,2,4-TRICHLOROBENIZHE \$10. U 129-84-8 PYREME ,
54-23-5 CARSON TETRACHLORIDE 7.40 568-70-7 CHLOROBENZENE 7.40	91—24—3 NAPHTHALENE S10. BU 85—68—7 BUTYLBENZYLPHTHALATE S10. U
199-65-6 VINYL ACETATE 15. U 100-41-6 ETHYLSENZINE 7.4U	106-67-0 6-CHLORDANILINE , , , , 110. U 91-94-1 3,3'+OICHLORDBENZIDINE . 1000. U
75-27-4 BROHODICHLOROHETHANE 7.4U 100-42-5 STYRENE 7.4U TOYAL XYLENES 7.4U	87-48-3 HEXACHEGROBUTADZENE 510. U 54-55-3 8ENZO(4)ANTHRACENE 510. U
TOTAL XYLENES 7.45	87-88-7 &-CHLURO-3-HETHYLPHENOL . 810. U 117-81-7 BIS(3-ETHYLHEXYL)PHTHALAYE 810. 8U 91-87-6 2-Hethylmaphthalene 810. U 218-01-7 Chrysene
	91-87-6 2-HETHYLNAPHTHALENE \$10. U 218-01-7 CHRYSENE
R - COMPOUND WAS DETECTED IN THE BC BLANK.	77-97-9 (1997) HEALINGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNGUN
J - REPORTED VALUE IS LESS THAN THE DETECTION LIMIT.	TS-TS-4 2.4.5-TRICKLOROPHENG, . 2300. U 257-48-4 SENZO(K)FLUGRANTHENE, . , \$16. U
U - COMPOUND ANALYZED FOR BUT NOT DETECTED. THE REPORTED	1-55-7 2-CHLOROMAPHITHALENE \$10. U 50-22-8 SENZO(A) PVNENE
VALUE IS THE MINING ATTAINALE DETECTION LINET FOR	12-2-4 2-NITROANLILINE
THE SAME.	131-11-3 DIMETHYL PHTHALATE
	208-94-8 ACENAPHTHYLENE
SEE PAGE 1A FOR COMPLETE DEFINITIONS OF THE DATA Reporting Bualifiers.	99-09-2 3-HITROANILINE 2100. U
FORM I	
	(1) - CANNOT BE SEPARATED FROM DIPHENYLAMINE Form I

.

Sediment Data: Volatile Organics In RAP Area Streams

Laboratory Name THAVER.G. Inc. DEPA ASDIS Case No. Organics Analysis Data Sheet. (Page 3) Pesticide/PC8s Concentration. Medium (Circle One) σw 11-21-56 Date Extracted /Prepared: 2-25-87 **Date-Analyzed:** 1 Conc/Dil Factor: 35 Percent Moisture (decented)

Sample Number 162929

GPC Cleanup CYes CINo Separatory Funnel Extraction @Yes Continuous Liquid - Liquid Extraction CYes

CAS Number		ug/1e(
319-84-6	Alona-BHC	12	υ
319-85-7	Beta-BHC	12	Ŭ
319-86-8	Dens-8HC	12	Ū
58-89-9	Gamma-BHC (Lindane)	12	υ
78-44-8	Heglachior	12	Ū
309-00-2	Algna	12	Ū
1024-57-3	Megtachior Ecoside	12	Ū
959-98-8	Endosulfan i	12	Ū
60-57-1	Dieldrin	24	Ū
72-55-9	4.4'-0DE	24	Ŭ
72-20-8	Endnin	24	U
33213-85-9	Endosultan #	24	Ū
72-54-4	4. 4-000	24	U
1031-07-8	Endosulfan Sulfate	24	ΰ
50-29-3	4 4'-00T	24	Ū
72-43-5	Methorychior	120	υ
53494-70-5	Engrin Kelone	24	υ
57-74-9	Chiordane	120	V
8001-35-2	Toxagnene	240	U
2674-11-2	Arocior-1016	120	υ
11104-28-2	Aroctor-1221	120	U
1141-16-5	Arocior-1232	120	Û
53469-21-9	Arocior-1242	960	
2672-29-6	Arocior-1248	120	υ
1097-69-1	Arocior-1254	710	-
1096-82-5	Arocior-1250	240	U
	Mirex	14	u

V₁ * Volume of extract injected (ul)

- Vg. + Volume of water extracted (mill
- W. Weight of sample extracted (g)

1000 -

V, * Volume of total extract (ul)

200

DRY WT.

Sample Number TENMILE CLEEK RM4.1 SYLVANIA AVE. 162275 **Organics Analysis Data Sheet** (Page 1) x4989 E.R.G., Inc. Case No: _____ Laboratory Name: . 162273 Lab Sample ID No: QC Report No: SAL /seo. 760336-61 Sample Matrix: Contract No: 4/5/8L Data Release Authorized By: Date Sample Received:

Volatile Compounds

Concentration: (Cov) Medium ICipcie Onet Date Extracted/Prepared: 11/86 Date Analyzed: 67 Conc/Dil Factor nHi 22 Percent Moisture: (Not Decanted).

CAS Number		
74-87-3	Chioromethane	/1 U
74-83-9	Bromomethane	BU
75-01-4	Vinyi Chioride	13 U
75-00-3	Chioroethane	
75-09-2	Methylene Chioride	/6 B
87-84-1	Acetone	12 U
75-15-0	Carbon Disuifide	6 U
75-35-4	1, 1-Dichloroethene	6 U
75-34-3	1, 1-Dichloroethane	6 0
156-60-5	Trans-1, 2-Dichloroethene	6 0
87-66-3	Chieroform	LV
107-08-2	1, 2-Dichloroethane	6 0
78-93-3	2-Butanone	13 0
71-55-8	1, 1, 1-Trichlorosthana	6 1
56-23-5	Carbon Tetrachioride	L.V
108-05-4	Vinyl Acetate	13 7
75-27-4	Bromodichloromethane	

CAS Number		ug/l or Go7R (Circle On-
78-87-5	1, 2-Dichloroprocene	6 4
10061-02-6	Trans-1, 3-Dichloropropene	1 6 .
79-01-8	Trichlorouthens	6
124-48-1	Dibromochioromethane	1
79-00-5	1, 1, 2-Trichloroethane	6
71-43-2	Senzene	- <u>(</u>
10061-01-5	cis-1, 3-Dichloropropene	6
110-75-8	2-Chloroethylvinylether	13 .
75-25-2	Bromolorm	6.
108-10-1	4-Methyl-2-Pentanone	13
591-78-6	2-Hexanone	13
127-18-4	Tetrachioroethene	6
79-34-5	1, 1, 2, 2-Tetrachloroethane	(.
108-88-3	Toiuene	1
108-90-7	Chlorobenzene	ί.
100-41-4	Ethylbenzene	6.
100-42-5	Styrene	6 .
	Total Xvienes	

Osta Reporting Qualifiers

ng results to EPA, the following results qualifiers are used Rogs or fee eres exert ne results are encouraged and of each flag must be see

.

- If the result is a value greater than or equal to the detection in sport the value
 - indicates compound was analyzed for but not detector. Appart the minimum pelection similar the sample with the Ulle § . IOUIbased on necessary concentration rationer action. (This is not necessarily he instrument detection limits). The feathers should read U-Compound was analyzed for but not detected. The number is the mamum attainable detection limit for the samele
 - indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1 2 response re essured or when the mass spectral data minister the presence of a compound that meets the dentification criterie but the fittuit is less shan the executed delection lister but presser than sere to g. 10.8. If time of personan is 10 µg/1 and a even of 3 up/1 is approximat, report on 3.3
- This flag applies to possicitly parameters where the identification has been centeries by GC MS Single component pesticities 210 ul in the final extract should be continued by GC. MS
- This lies is used when the analyse is laying in the brank as well as a sample - I indicates passible propage plane containmation and warns the Gata user 16 tate appropriate perior

NR No value required.

Sediment Data: Volatile Organics In RAP Area Streams

W₅ * Weight of sample extracted (g) V + Volume of total extract suit

Vs _____ Ws _ 23 a v 1000 2 v 3.0 2

LARDRATORY CASE NO:	NAME: TNA/ A4787					ANPLE MUNISER 42273	1		EPA A4979					Semple 16227
		ORI		NLYSIS DATA (2)	SHEET		1			On	ganics Analysia (Page 3		heet	<u>_76229</u>
			SEMIVOLAT	TLE COMPOUN	25				~		Pesticide/ P	PC8s		
								Concentration.	(Law Medium	(Cid	cie Onei	GPC Cle	ianus CYes Z	No
ONCENTRAT		LOW		" OPC CLEA	NUP YES "X NO"			Date Extracted / F	Tecarect		1-7-86	Securet	orv Funnel Ext	
	CTED/PREPARED:				RY FURNEL EXTRACTION	YES					2-3-87			
TATE ANALY		12/24/86		CONTINUO	US LIQUID-LIQUID EXTRA	CTION YE	5	Date Analyzed: .			<u> </u>	Continu	out Liquid - Liq	Juid Extraction
CONC FACTO		1.916269						. Conc/Dil Fector:						·
PERCENT HO	ISTURE: (BECAN	TED)							/ddb		22			
						05/K#		Percent Moisture	(Gecsinted)					
CAS HUMBER			U\$/K\$ 420. U	CAS NUMBER 93-32-7		+								
198-78-8 111-44-4		THYLISTHER		81-28-5	2.4-DINITROPHENOL				CAS Num				ICircle Onel	í
11-17-8				144-42-7	4-HITROPHENOL				319-4		Alona-SHC		10 11	
41-73-1		ENZENE		132-44-9	DIMENZOFURAN									
--7		E)(210HE		121-14-2	2.4-DINITROTOLUENE .				319-4		Sets-3HC		10 0	
		L		444-29-2	2. 4-DINITROTOLUENE	429. 1	U		319-8	_	Dens-8HC		<u>10 U</u>	
5-50-1				84-44-2	DIETHYLPHTHALATE	420, 1			58-89		Gamma-BHC (Lind)		10 0	
5-48-7				7445-72-3	4-CHLOROPHENYL-PHENYL	THER 420. 1	v		78-44		Heotechior		10 0	
7438-32-7	**************************************	SOPROPYL) ETHER	1 429. U	84-73-7	FLUGRENE	428. 1	U .		309-0		Algrin		10 1	
-	4-HETHYLPHEND		420. U	144-14-4	4-NITROANILINE	X889. 1	١		1024		mediachior Eddaida		10 0	
21-44-7	N-NITROSO-DI-	N-PROPYLANINE	429. U	\$34~\$2~1	4.6-DINITRO-2-HETHYLPH	ENOL 2000. 1	2		959-9	8-8	Endosuitan i		10 U	
7-72-1	HEXACHLOROETH	AME	420, U	*4-3*-4	H-NITROSODIPHENYLAHINI	(1) 428. 1	U	•	60.57	-1	Overation		ن 20	
18-75-3	WITROFENZEME		420. U	141-53-3	4-BROHOPHENYL-PHENYLET	WER 420. (U		72-55	- 7	4.008		70 U	
78-59-1	ISOPHOROME -		420. U	118-74-1	HOMACHLOROBENZEME				72-20	-8	Engrin		ان مد	
19755				\$7-\$4 -\$	PERTACHLOROPHENOL		-		33213	1-65-9	Endosuitan II		ل مد	
85-67-7		HEINOL		*5-41-#	PHENANTHRENE				72-54	-A	4. 4-000		20 0	
5-85-+				129-12-7	ANTHRACENE				1031-		Engosuitan Suitate		20 1	
11-91-1		THOXYIMETHANE		#4-74-2	DI-N-BUTYLFHTHALATE .	• • • • • • •			50-29		4 4'-00T		20 0	
20-03-2		HENCL		2*6-44*	FLUGRANTHERE				72-43		Methozychior		100 0	
20-02-1		RODENZEME		129-44-4	FYRENE					-	Engrin Kesone		30 0	
1-28-3				85-48-7	3.3'-OICHLORDBENZIDINE									
4-47-		NR		71-74-1 54-55-3	SENZOIAJANTHRACENE				57.74		Chiordane		100 U	
7-48-3				117-61-7	SIS (2-ETHYLKEXYL) PHTHA				6001-	_	Tozeoriene		200 0	
17-58-7 1-57-6		THYLPHENOL		218-01-7	CHRYSENE						Arocior-1016		100 0	
7-47-6 7-47-6		LOPENTACIENE		117-84-4	DI-N-OCTVL PHTHALATE .					_	Arocier-1221		100 1	
7-47-4 8-41-2					BENZO(B)FLUORANTHENE .	• • • • • •			11141	-16-5	Arocior-1232		100 0	
8-88-2 5-85-6		KOPHENOL		247-44-7	TENZO (K) FLUORANTHENE				53469	-21-9	Arocior-1242	1	100 J	
1-52-7		HALENE		54-32-8	BENZO (A) PYREME				12572	-29-6	Aroctor-1248		100 3	
8-74-4			-		INDENO(1.2.3-CD) PYRENE				11097	1-89-1	Arocior-1254		700 U	
31-11-3		ALATE		\$3-70-1	DISENZ (A. HIANTHRACENE	•••			11096	-82-5	Arocier-1250		-00 J'	
48-94-8		K			SENZO (G. H. Z)PERYLENE .	420. U	1		فيتقدمونها		MIREX		20 U	
9-47-2	3-NITROANILIN	E	2000. U								* Volume of extract		•	

FORM 1

Sediment Data: Volatile Organics In RAP Area Streams

SNAN CREEK AT COLLINGNOOD BLUD." RM 1.2 I SAMPLE MUNICE I 1 1 4162922 ORGANICS ANALYSIS DATA SHEET (PAGE 1) LABORATORY HANE: THA/ERS CASE NO: A5 0 35 LAB SAMPLE TO NO: VI62928 AC REPORT NO: SANPLE MATRIX: SOIL CONTRACT NO:

1

AUDATE SAMPLE RECEIVED: 11/14/84 DATA RELEASE AUTHORIZED BY

VOLATILE COMPOUNDS

CONCENTRATION:	LOW		
DATE EXTRACTED/PREPARED:	11/19/84		
SATE ANALYZED:	11/19/86		
CONC/DIL FACTOR:	1.	PH	7.40
PERCENT MOISTURE: CNOT D	ECANTED}	54. 0	

CAS HUMBER	ł	U\$/X\$	CAS NUMBER	2	U6/K6
74-87-3	CHLOROMETHANK	22. U	78-67-6	1.2-SICHLOROPROPANE	11. U
74-83-9	BROHONETHANE	22. U	10041-02-4	TRANS-1. 3-DICHLOROPROENE	11. U
75-01-4	VINVL CHLORIDE	22. U	77-01-4	TRICHLOROETHENE	19.
75-04-3	CHLOROETHAME	22. U	124-48-1	DIBROHOCHLOROHETHANE	11. U
75+-2	HETHYLENE CHLORIDE	13. 8	79-40-5	1.1.2-TRICHLOROETHANE	11. U
47-44-1	ACETONE	22. U	71-43-2	BENZENE	11. U
73-15-4	CARSON SISULFIDE	11. U	10041-01-5	CIS-1. 3-DICHLOROPROPERE	11. U
75-35-6	1.1-DICHLOROETHENE	11. U	110-75-8	2-CHLOROETHVLVINYLETHER	22. U
75-35-3	1.1-DICHLOROETHANE	11. U	75-25-2	BROKOFORM	11. U
\$54~4 0~5	TRANS-1.2-DICHLOROETHENE	11. U	102-10-1	4-HETHYL-2-PENTANONE	22. U
47-44-3	CHLOROFORM	11. U	571-78-4	2-HEXANONE	22. U
1#7-#4-2	1.2-DICHLORDETHANE	11. U	127-18-6	TETRACHLOROETHENE	11. U
78-+3-3	2-8UTANONE	22. U	79-34-5	1,1,2,2-TETRACHLORDETHANE	27. U
71-65-4	1.1.1-TRICHLORDETHANE	11. U	148-88-3	TOLUENE	41. U
\$4-23-5	CARBON TETRACHLORIDE	11. U	188-98-7	CHLOROBENZENE	11. U
184-41-4	VINYL ACETATE	22. U	100-41-4	ETHYLSENZENE	11. U
75-27-4	BRONDDICHLOROHETHANE	11. U	100-42-5	STYRENE	11. U
				TOTAL XYLENES	11. U

- COMPOUND WAS DETECTED IN THE OC BLANK.

U - COMPOUND ANALYZED FOR BUT NOT DETECTED. THE REPORTED VALUE IS THE MINIMUM ATTAINABLE DETECTION LIMIT FOR THE SAMPLE.

SEE PAGE 14 FOR COMPLETE DEFINITIONS OF THE DATA REPORTING BUALIFIERS.

SWAN CREEK AT COLLINGWOOD BLVD. RM 1.2

		1	SAMPLE HUMBER 1
		1	1
		1	V1621288 1
CREAK	ICS ANALYSIS DATA SHEE	T .	
	(PASE 1)	1	
LABORATORY HANE: THA/ERE	CASE HO:	A5075	
LAE SAMPLE ID NO: VIA29288	AC REPORT NO	1	
SANPLE MATRIX: SOIL	CONTRACT NO:	4	
DATA RELEASE AUTHORIZED BY 2014402.	HARLANDATE SAMPLE	MECEIVED: <u>11/54/</u> #	•

VOLATILE COMPOUNDS

CONCENTRATION:	LOW		
BATE EXTRACTED/PREPARED:	11/20/84	1	
BATE ANALYZED:	11/20/84	1	
CONCIDIL FACTOR:	1.	PH	7.68
PERCENT HOISTURE: (HOT DI	ECANTED)	\$4. 8	

CAS HUNBE	A	UG/K6	CAS NUMBER	L	UG/XS
74-47-3	CHLOROHETHANE	22. V	78-27-5	1.2-01CHLOROPROPAME	11. U
74-83-4	BROHOMETHANE	22. U	10041-02-6	TRANS-1. 3-DICHLORDFROENE .	11. V
75-++14	· VINVL CHLORIBE	· 22, U	79-01-6	TRICHLOROETHENE	4. ZJ
75-40-3	CHLOROETHANE	22. U	124-48-1	DISRONOCHLOROMETHANE	11. 9
75-69-2	HETHVLENE CHLORIDE	\$4. 8	77-++-5	1.1.2-TRICHLOROETHANE	11. U
47-44-1	ACETONE	38.	71-43-2	HENZERR	11. U
75-15-+	CARBON DISULFIDE	11. U	10041-01-5	CIS-1. 3-DICHLOROPROPENE	11. U
75-35-4	1.1-SICHLORGETHEME	11. U	110-75-8	2-CHLOROETHYLVINYLETHER .	22. U
75-35-3	1.1-DICHLOROETHANE	11. U	75-25-2	BROMOFORM	11. U
154-49-5	TRANS-1. 2-DICHLORDETHENE .	\$1. U	108-10-1	4-HETHYL-2-PENTANONE	22. U
47-44-3	CHLOROFORM	11. U	391-78-4	2-HEXANONE	22. U
107-04-2	1.2-DICHLORGETHANE	11. U	127-18-4	TETRACHLORDETHENE	11. U
78-93-3	2-BUTANDHE	22. U	77-34-5	1.1.2.2-TETRACHLORGETHANE	22. 0
71-55-4	1.1.1-TRICHLOROETHAKE	11. U	148-88-3	TOLUENE	11. U
\$4-23-5	CAREON TETRACHLORIDE	11. U	108-98-7	CHLORODENZENS	11. 1
198-95-4	VINYL ACETATE	34. 1	100-41-4	ETHVLOENZENE	11. U
75-27-4	BRONODICHLOROMETHANE	11. U	200-42-5	STYRENE	11. U
				TOTAL HYLERES	11. U

8 - COMPOUND WAS DETECTED IN THE AC BLANK.

- J REPORTED VALUE IS LESS THAN THE DETECTION LINIT.
- U COMPOUND ANALYZED FOR BUT NOT DETECTED. THE REPORTED VALUE IS THE HINIHUM ATTAINABLE DETECTION LIMIT FOR THE SAMPLE.

SEE PAGE 1A FOR COMPLETE DEFINITIONS OF THE DATA REPORTING QUALIFIERS.

A-11

Page No.

Sediment Data: Volatile Organics In RAP Area Streams

DATE ANALYZED: 02/03/87 CONTINUOUS LIEUID-LIEUID ENTRACTION YES Cate-Ana DIL FACTOR: 6.000 6.000 Conc/DII Conc/DII Conc/DII DIL FACTOR: 6.000 54.0 Conc/DII Conc/DII Conc/DII CAS MUNBER UG/KG CAS MUNBER UG/KG CAS MUNBER UG/KG Percentri 110-46-5-2 PHENOL 2700. U 32-12-7 ACENAPHTMENE. 5300. 14000. 140	(Page 3)
CONCENTRATION: LDW GPC CLEANUP X YES NO OATE EXTRACTED/PREPARED: 13/21/84 SEPARATORY FUNREL EXTRACTION VES Date Extractin D	Pesticide/PCBs
CAS NUMBER UG/KG CAS NUMBER UG/KG CAS NUMBER UG/KG Percent N 111-64-6 DIS/C-CHLOROETHYLJETHER 2700. U 81-28-5 2.4-DINITROPMENOL 14000. U 14000. U 111-64-6 DIS(2-CHLOROETHYLJETHER 2700. U S1-28-5 2.4-DINITROPMENOL 14000. U 14000. U 95-57-0 2-CHLOROPENOL	rected / Prepared: 11-21-86 Separatory Funnel Extraction Cityes ilyzed: Continuous Liquid - Liquid Extraction Cityes
111-44-4 BIS(2-CHLOROETHYL)ETHER 2700. U S1-28-5 2.4-DINITROPHENOL 14000. 95-57-8 2-CHLOROPENDUL . . 2700. U 100-27-7 4-NITROPHENOL . 14000. 561-73-5 1.3-DICHLOROPENZENE . 2700. U 132-64-7 DIEENZOPURAN . . 4400. 564-53-7 1.4-DICHLOROPENZENE . 2700. U 132-64-7 2.4-OINITROPOLUENE . . 2700. U 100-51-6 BENZYL ALCOHOL 2700. U 646-20-2 2.4-OINITROPOLUENE 2700. U 84-62-2 2.4-OINITROPOLUENE .	Moisture (decamed) 54
105-67-9 2.4-DINETHVLPHENDL	CAS ug/latug/Kg Number (Circle One) 319-84-6 Alone-8HC 17 319-85-7 Berz-8HC 17 U 319-86-8 Cettz-8HC 17 U 319-86-8 Cettz-8HC 17 U 319-86-8 Cettz-8HC 17 U 319-86-8 Germa-8HC (Lindane) 17 U 78-46-8 Hegman-8HC (Lindane) 17 U 309-00-2 Algrin 17 U 309-38-8 Empositive Eposities 17 U 959-98-8 Emposurian I 17 U 953-98-4 Emposurian I 17 U 92-55-9 4 4-00E 34 1
20-83-2 2.4-DICHLOROPHENGL 2900. U 204-64-0 PLUGRANTHENE 2600. 20-82-1 1.2.4-TRICHLOROBENZENE 2700. U 127-00-0 PVRENE	72-35-9 4-4-0DE 34 0 72-20-8 Endmin 34 0 33213-65-9 Endosulfan II 34 0 72-54-8 4-4-0D0 34 0 1031-07-8 Endosulfan Sulfare 34 0 50-29-3 4-4-007 34 0 72-43-5 Matnosvenion 170 0 53494-70-5 Endosulfan Keipne 34 0 57-74-9 Chloridiate 34 0 8001-35-2 Tossprene 34 0

(1) - CANNOT BE SEPARATED FROM DEPHENVLANINE

3-NITROANILINE

2-CHLORONAPHTHALENE . . . 2900. U 50-32-8

*1-38-7

88-74-4

131-11-3

-+*-*

--2

FORM I

BENID(A) FYRENE

INDEND(1.2.3-CD)PYRENE . . 2644. J

DISENZIA, H) ANTHRACENE . . 1244. J

Vs - * Volume of water extracted (mil W₄ ³ Weight of sample extracted (g)

V . + Volume of extract injected (ui)

Q.

3.0

1600

170

340 Ċ,

340 V 74 U

لتىرەە10

53469-21-9 Arocior-1242

12672-29-6 Arocior-1248

11097-69-1 Arocior-1254

11096-82-5 Arociar-1260

Minex

140

DRY WT.

or $W_{\rm s}$

V₂ = Volume of total extract (ui)

Sediment Data: Volatile Organics In RAP Area Streams

Sample Number OTTER CREEK RM2.1 MILLARD AVE. 162270 Organics Analysis Data Sheet (Page 1) E.R.G., Inc. OEPA Laboratory Name: Case No: 162270 Lab Sample ID No: OC Report No: SOIL / SED Sample Matrix; Data Release Authorized By: Johaph Ct. Handou Date Sample Received: 11/5/86 Volatile Compounds Concentration: Low Medium (Circle One) 12/2/86 Date Extracted/Prepared: Date Analyzed: 12/2/86 6.58 Conc/Dil Factor:

Percent Moisture: (Not Decanted) 53

CAS Number		ug/l orig (Circle	
74-87-3	Chloromethane	21	VI
74-83-9-	Bromomethane	21.	· . 11 ·
75-01-4	Vinyl Chloride	21	V
75-00-3	Chioroethane	21	U
75-09-2	Methylene Chloride	21	B
67-64-1	Acetone	21	в
75-15-0	Carbon Disulfide	1//	7
75-35-4	1, 1-Dichlorosthene	11	7
75-34-3	1, 1-Dichlomethane	11	0
156-60-5	Trans-1, 2-Dichloroethene	11	IJ
67-66-3	Chloroform	11	V
107-06-2	1. 2-Dichtoroethane	11	J
78-93-3	2-Butanone	21	0
71-55-6	1, 1, 1-Trichloroethane	//	7
56-23-5	Carbon Tetrachloride	11	J
108-05-4	Vinvi Acetate	21	7
75-27-4	Bromodichioromethane	11	7

CAS Number		ug/lonug/Kg (Circle One)
78-87-5	1. 2-Dichloropropane	11 0
10061-02-6	Trans-1, 3-Dichloropropene	···· H ······
79-01-6	Trichloroethene	1 11 J
124-48-1	Dibromochloromethane	// J
79-00-5	1, 1, 2-Trichloroethane	// J
71-43-2	Benzene	11 U
10061-01-5	cis-1, 3-Dichtorooropene	11 J
110-75-8	2-Chloroethylvinviether	2/ 1
75-25-2	Bromoform	11 5
108-10-1	4-Mathyl-2-Pentanone	2/ 5
591-78-6	2-Hexanone	21 V
127-18-4	Terrachioroethene	11 1
79-34-5	3. 1. 2. 2-Terrachioroethane	<i>11 J</i>
108-88-3	Toluene	320
108-90-7	Chiorobenzene	11 2
100-41-4	Ethylbenzene	11 7
100-42-5	Styrene	
	Total Xvienes	11 5

Date Reporting Qualifiers

¢

- 8

For reporting results to EPA. The following results qualifiers are used Additional flags or footness expreming results are encouraged. Mowever, the Seferition of each flag missi be expect.

- Yalue I international a value grapper than or equal to the detection limit report the value
- In cases intribuind was an even for our nor based of Above the number of the strength of the sample with the UKE C. Durbased on non-cases introduction and on the sample with nor necessaring necessaring the strength of the sample of the sample of the necessaring of the sample sample of the sample of the sample of the sample sample sample of the sample of the sample monimum attainable descends the for the sample of the sample
- J muještes an estimategi value. This tag is used entrem when estimating a concentration for remainery identified compounds unere a 1 1 response is assumed or uners the mass spectral data mujester tha reserve et a compound that meets the identification criteria but the result is least than the specified exteriorith with but graster than there. Qui 3 time of extension is 10 up r and a interview.

"nis llag addies to posticido parameters where the reprintersion has taken cantumed av 30 MS i Sinale tompohens pesticides≥"0 ng igu is ing ninti istitatti shtud de tahtiringo to 30 MS

"nis lab is used when the anglering tound in the blane as well so a lamole in indicates possible propable brank containwharlow and warns the data user to take appropriate action.

NR. No value required.

LASE NO:	/ HAHE; THA/ A4789	(IND				1 SAMPL	
						t	
		4			ALVSIS DATA AGE 2)	SHEET	
						1	
			SENIN	OLA	TILE COMPOUN	105	
	'TAN:	LOW			GPE CLEA	NÚP YEE X KO	
	CTED/PREPARED;						
ATE ANALY		01/14/87				IRY FUNKEL EXTRACTION VI US LIBUID-LIBUID EXTRACTION	
ONC FACTO		1. 007047			EAMI TEAD	WE WARDEN WARDEN ANTRACTION	, ,
	ISTURE: (DECAN					į	
						1	
			UG/K	e.	CAS NUMBER		US/1
*=-75-2	PHENOL		878.		\$3-32-7	ACENAPHTHEME	766.
11-44-4	SIS(2-CHLOROET		788.	U	81-23-5	2.4-DINITROPHENOL	
5-57-8	2-CHLOROPHENO		789.	Ų	100-02-7	4-NITROPHENOL	
41-73-1	1, 3-DICHLOROM	ENZENE	788,	U	132-44-9	DISENZOFURAN	
*****	1.4-OICHLOROBI		789.	ų	121~14-2	2.4-DINITADTOLUENE	768.
	SENZYL ALCOHO	الموارين بوريونها راميط			. 484-28-2 .	2. A-DINITROTOLURNE	. 700
5-54-1			- 789.	D.		STETHYL PHTHALATE	
5-48-7	2-METHYLPHENOL		700.	ប	7005-72-3	4-CHLOROPHENYL-PHENYLETHER	789.
	SIS(2-GHLOROIS			U	\$4-73-7	FLUORENE	744.
*****	4-METHYLPHEND				100-10-6	4-NITROANILINE	3400.
21-44-7	N-NITROSO-DI-P		748.		534-52-1	4.4-DINITRO-2-METHYLPHENDL	3444.
7-72-1	HEXACHLOROETH		700.	-	86-30-6	N-NITROSODIPHENYLAMINE (1)	786.
875-3	NITROBENZENE .		789.	-	101-58-3	4-BROHOPHENYL-PHENYLETHER	788.
	ISOPHORONE		744,		118-74-1	HEXACHLORDBENZENE	700.
*-75-5	2-NITROPHENOL		748.	-	87-84-5	PENTACHLOROPHENGL	3488.
45-47-7	2.4-DIMETHYLP		788,	-	85-#1-8	PHENANTHRENE	700.
8-85-0	SENZOIC ACID .		3688.	-	12#~12-7	ANTHRACENE	788.
11-71-1	SIS (2-CHLOROET		700.	-	*4-74-2	DI-N-BUTYLPHTHALATE	744.
20-03-2 20-02-1	2.4-DICHLOROPH 1.2.4-TRICHLOR		790.	•	204-44-0	FLUGRANTHENE	\$40.
1-20-3			74 4 . 744.	-	127-40-4	PYRENE	710-
****	4-CHLORDANILIN		744.	-	*****	BUTYLBENZYLPHTHALATE	769.
7-48-3	HEXACHLORDBUTA		744.	-	71-74-1	3.3'-DICHLORGBENZIDIME	1488.
7-54-7	4-CHLDRD-3-HET		7##. 7##.	-	\$4-55-3 117-81-7	JENZO (A) ANTHRACENE	788.
1-57-6	2-HETHYLNAPHTH		700.			BIS (2-ETHYLNEXYL) PHTHALATE	*1*.
7-47-4	HEXACHLOROCYCL		788.			CHRYSENE	420.
8-44-2	2. 4. 4-TRICHLOR			U U		DI-N-OCTYL PHTHALATE	700.
8-15-6	2.4.S-TRICHLOR		3444.	-		BENZOCEFFLUORANTHENE	764. 768.
1-18-7	2-CHLORONAPHTH		784.			BENZD (A) PYRENE	
-74-4	2-NITROANILINE		2480.			INDEND(1.2.3-CD)PYRENE	264. 788.
31-11-3	DINETHYL PHTHA		788.	-		DISENZ(A, H)ANTHRACENE	788. 788.

(1) - CANNOT DE SEPARATED FROM DIPHENVLAMINE

Sediment Data: Volatile Organics

In RAP Area Streams

Sample Number

162271

Laboratory Name THERG, inc. Case No. _____OEPA A4989 Organics Analysis Data Sheet

(Page 3)

Pesticide/PC8s

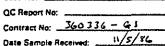
Concentration: Low Medi	
Dete Extracted/Prepared:	1-7-86
Cancy Dil Factor:	
Percent Moisture (decanted)	53

GPC Cleanup QYes.GNo Separatory Funnel Extraction QYes. Continuous Liquid - Liquid Extraction QYes

Sample Number

162270

	CAS Number		uc/letuc Circle	r/Ka Omei		
	319-84-6	Algna-BHC.	17	U		
	319-85-7	Bets-8HC	1 17	υ		
	319-86-6	Celta-BHC	1 17	υ		
	58-89-9-	Gamma-BHC (Lincener	1 17	U		
	75-44-8	Hectachion	17	U		
	309-00-2	Aldrin.	1 17	ण		
د این بی کرد اما این در مراجع این از در زیاده این معمد را تر اینده داشتن	1024-57-3.	Heotachior Spande	41	υŤ	ni na priva su finanza. Na santa sa	
	959-98-8	Endosuitan i	17	U		
• •	60-57-1	Diexann	34	U		
	72-55-9	4.4-00E	34	U		
	72-20-8	Enerim	34	υ		
	33213-65-3	Encoultan (34	U		
	72.54-8-	4.4-000	34	ŪΓ		
	1031-07-8	Endosullan Sullate	34	υŢ		
	50-29-3	4 4'-30T	34	U		
	72-43-5	Memoxychior	170	U		
		Endrin Ketone-	34	U		
	57 74-9	Chiordane	1 170	0		
	6001-35-2	Toxeonene-	1 340	U		
	12674-11-2	Arocior-1016	170	υ		
	11104-28-2	Arocier-1221	170	V		
	11141-16-5		170	J		
	53469-21-9	Arocier-1242	170	U		
	12672-29-6	Arocier-1248.	170	U		
	11097-69-1	Arociar-1254	340	U.		
	11096-82-5	Aroctor-1250	340	V		
*		MIREX	34	U		
	v	+ Volume of extract injecti	M iy.			


- V . * Volume of water extracted imp
- W_ * Weight of sample extracted (g)
- V, * Volume of total entract (ul)

DRY WT.

WHEELING ST. **Organics Analysis Data Sheet** (Page 1) Case No: DEPA- A4189 Laboratory Name: _____E.R.G., Inc.

OTTER CREEK MM 4.0

Lab Sample ID No:	62271
Sample Matrix:	SOIL SED.
Data Release Authorize	d Sv:

Volatile Compounds

Concentration: (ow) Medium (Circle One) 11/8/86 Date Extracted/Prepared: 11/8/86 Date Analyzed: ... 6.5 Conc/Dil Factor: 3/ Percent Moisture: (Not Decanted)

CAS Number		ug/lor ⁽ (Circi	
74-87-3	Chloromethane	13	U
74-83-9	Bromomethane	13	U
75-01-4	Vinyl Chloride	13	J
75-00-3	Chloroethane	13	J
75-09-2	Methylene Chloride	12	īΒ
67-84-1	Acetone	8	J
75-15-0	Carbon Disuifide	6	v
75-35-4	1, 1-Dichloroethene	Ĺ	ν
75-34-3	1, 1-Dichloroethene	6	V
156-60-5	Trans-1, 2-Dichloroethene	6	J
67-66-3	Chloroform	6	υ
107-06-2	1. 2-Dichloroethane	6	IJ
78-93-3	2-Butanone	13	v
71-55-6	1, 1, 1-Trichloroethane	6	J
56-23-5	Carbon Tetrachionde	6	J
106-05-4	Vinvi Acetate	()	J
75-27-4	Bromodichloromethane	6	v

CAS Number		ug/lore (Circie	
78-87-5	1, 2-Dichloroprocene	6	U
10061-02-6	Trans-1, 3-Dichloropropene	6	U I
79-01-6	Trichloroetherie	6	
124-48-1	Dibromochloromethane	6	J
79-00-5	1. 1. 2-Trichloromhane	6	<u>v</u>
71-43-2	Benzene	6	V.
10061-01-5	cis-1, 3-Dichlorocroperve	6	J
110-75-8	2-Chloroethylvmylether	13	U.
75-25-2	Bromolorm	6	J
108-10-1	4-Methyl-2-Pentanone		U
591-78-6	2-Hexanone	13	
127-18-4	Tetrachlordethene	6	
79-34-5	1, 1, 2, 2-Tetrachiorgethans	6	J
108-88-3	Toluene	. 6	
108-90-7	Chioropenzene	6	J.
100-41-4	Ethvibenzene	6	U
100-42-5	Styrene	6	U I
	Total Xvienes	4	J

Gate Assorting Qualifiers

For reporting results to EPA, the following results sublifiers are used. Additional flags or footnotes explaining results are encouraged. However, t definition of each flag must be opping.

.

- Value If the result is a value greater thin or equal is the detection limit report the value
- J moleates compound was analyzed for but not detected. Report the minimum detection units for the sample within the Using "Dublead on necessary concentration: deviden action. If his is not necessary in a instrument gargetion unit in the feathore should read. U Dompound was analyzed for but net detected. The humber is the minimum stainaged electron thm for the sample.
- indicates on estimated value. This fing is used entrer were estimating a concentrative for terraintein userview compoures where a 1 1-records or assumed or when the mass boetrist case indicated the presence of a compound that moves the densification criteria but the result is and their terraintein densification criteria but the result is and their terraintein densification criteria but the result is and their terraintein densitient preserving a gradient as esciences, records as 32 concentration of 3 age 1 to selected as 1
- C This flag accreases a parameters where the apendiduction has been contenned by GC MS Single component pessiones≥10 ing up in the final exception should be contenned by GC MS
 - "his" ay is used when the analyse sigund in the drame as wentas a sample — 1) indicates possible- procedue plane, containmation and waths the data user to take appropriate action
- NR No value required.

1000 v J.o. ul

LABORATORY NAME: THA/ERS CASE NO: A4787

> ORGANICS ANALYSIS DATA SHEET (PASE 2)

I SAMPLE MUNSER I

1

1

YES

1 142271

1

SERIVOLATILE COMPOUNDS

CONCENTRATION: LOW	OPC CLEANUP YES X NO
DATE EXTRACTED/PREPARED: 11/07/86	SEPARATORY FUNNEL EXTRACTION YES
DATE ANALYZED: 01/14/87	CONTINUOUS LIGUID-LIGUID EXTRACTION
CONC FACTOR: 1.017248	
PERCENT HOISTURE: (DECANTED) 31	

CAS NUMBER	t	US/KS	CAS NUMBER	ŧ	UG/KE
1+8-+5-2	PHENOL	480. 11	83-32-9	ACENAPHTHEME	480, U
111-44-4	BIS(2-CHLOROSTHYL)ETHER .	459. U	\$1-2#-5	2.4-DINITROPHENOL	2300, U
95-57-8	2-CHLOROPHENOL	480. U	100-02-7	4-HITROPHENOL	2340. U
541-73-1	1.3-DICHLOROSENZENE	480. U	132-44-7	DISENZOFURAN	150. J
184-44-7	1.4-SICHLORDEENZENE	489. U	121-14-2	2.4-DINITAGTOLUENE	484, U
100-51-6	BENZYL ALCOHOL	489. 12	444-28-2	2.4-DINITROTOLUENE	480, U
*5-84-1	1.2-DICHLOROSENZENE	488. U	84-44-2	DIETHYLPHTHALATE	420, U
95-48-7	2-HETHYLPHENDL	480. U	7005-72-3	A-CHLOROPHENYL-PHENYLETHER	480. U
37438-32-9	EIS (2-CHLOROISOPROPVL)ETHER	480. U	\$4737	FLUGRENE	278. J
1#4-44-6	4-HETHYLPHENGL	486. Q	100-10-6	4-HITRDANILINE	2300. 8
+21-44-7	N-NITROSO-DI-N-PROPYLANINE	688. U	\$34-\$2-1	4. 4-BINITRO-2-KETHALPHENOL	2300. U
47-72-1	HEXACHLORDETHANE	480. U	84-34-4	H-HITROSODIPHENYLAMINE (1)	480. U
78753	NETROBENZENE	486. U	101-55-3	4-SRONOPHENYL-PHENYLETHER	420, U
78-59-1	ISOPHORONE	480. U	118-74-1	HEXACHLOROBENZENE	488. U
88-75-5	2-HITROPHENOL	480. U	#7-84-5	PENTACHLORDPHENOL	2300. U
145-47-7	2.4-DINETHYLPHENOL	489. U	#\$~+#1-#	PHENANTHRENE	2300
+3850	SENZOIC ACID	2300, U	120-12-7	ANTHRACENE	#30.
111-71-1	JIS (2-CHLOROETHOXY) HETHANE	480. U	84-74-Z	DI-N-BUTYLPHTHALATE	488. U
128-83-2	2.4+SICHLOROPHENDL	420. U	284-44-0	FLUDRANTHENE	3548.
12+-42-1	1.2.4-TRICHLOROBENZENE	4 20. U	127-98-0	PYRENE	3788.
*1-2+-3	NAPHTHALENE	480. U	85-46-7	SUTVLSENZYLPHTHALATE	488. U
194-47-8	4-CHLORDANILINE	486. U	#1-#4-1	3.3'-DICHLOROBENZIDINE	970, U
27-42-3	HEXACHLOROBUTADIENE	480. U	54-55-3	SENTO (A) ANTHRACENE	1548.
\$	4-CHLORO-3-METHYLPHENOL .	488, U	117-81-7	BIS(2-ETHVLHEXYL)PHTHALATE	65 Ø
#1-\$7~+	I-METHYLNAPHTHALENE	400, U	218-01-7	CHRYSENE	1708
11-47-4	HERACHLOPPEVCLOPENTABLENE	480. U	117-24-0	DI-N-OCTYL PHTHALATE	480. U
83 -+ +=-2	2.4.4-TRICHLOROPHENOL	480, U	285-99-2	SENZO(S)FLUORANTHENE	480, U
*5-*5-4	".4 S-TRICHLOADPHENOL	2300. U	287-08-9	SENZO (K) FLUORANTHENE	480, U
91-58-7	2-CHLORONAPHTHALENE	480. U	\$4-32-8	SENZO (A) PYRENE	1880.
88-74-4	2-NITROANILINE	2388. U	193-39-5	INDENO(1, 2, 3-CD) PYRENE	480.
131-11-3	JINETHYL PHTHALATE	480. U	\$3-70-3	DISENZ (A. H) ANTHRACENE	244. J
298-94-8	ACENAPHTHYLENE	488. U	191-24-2	SENZO(G.H.I)PERVLENE	750.
97-47-2	3-NITROANILINE	C300. U			

(1) - CANNOT BE SEPARATED FROM DIPHENYLAMINE

FORM I

Laboratory Name: THERG. Inc. Sampia Number Case No. OEPA A4989 162271 Organics Analysis Data Sheet. (Page 3) Pesticide/PC8s A Medium Circle Coast

Date Extracted / Prepared:	1-7-84
Date Analyzed:	2-3-87
Conc/Oil Factor:	1
Percent Moisture (decented)	31

GPC Cleanup IIYes ZNo Separatory Funnel Extraction CYes Continuous Liquid - Liquid Extraction CYes

> ____ ----

CAS Number	•	ug/totu (Circia	
319-84-6	Alona-8HC	12	Ŭ
319-85-7	Beta-8HC	12	υ
319+86+4	Dena-BHC	12	U
58-89-9	Gamma-8HC (Linoane)	12	υ
78-44-8	Heotachior	12	υ
309-00-2	Aidrin	12	U.
1024-57-3	Hentachiar Epoxice	12	υ
959-98-8	Endosulfan i	12	Ū.
60-57-1	Dieidrin	24	J
72-55-9	4.4'-00E	24	υ
72-20-8	Engrin	24	υ
33213-65-9	Endosulan II	24	U.
72-54-8	4.4.000	24	ΰ
1031-07-8	Endosullan Sullate-	24	V
50-25-3	4 4'-00T	24	U
72-43-5	Methoxycritor	120	υ
53494.70.5	Enarin Ketane	24	υ
57.74.9	Chiomane	120	U
8001-35-2	Tazaphene	240	U
12674-11-2	Arector-1016	120	υ
11104-28-2	Arocier-1221	120	U
11141-16-5	Arocior-1232	120	υ
53469-21-9	Arocier-1242	120	υ
12672-29-6	Arocier-1248	. 120	υ
11097-89-1	Aroclor-1254	240	J
11096-82-5	Arocior-1260	240	υ
	MIREX	Z4	ų

V. - * Volume of extract injected tuil

Value Volume of water extracted cmit

Ws = Weight of sample extracted (g)

۷,

<u>I000 Ml</u>

V₁ * Volume of total exifect (ui)

219 DRY WT.

Sediment Data: Volatile Organics In RAP Area Streams

Sample Number OTTER CREEK RM 5.9 162272 OAKDALE AVE. **Organics Analysis Data Sheet** (Page 1) A4989 Laboratory Name: _____E.R.G., Inc. Case No: DEPA 112272 R Lab Sample ID No: QC Report No: SOIL /SED. Sample Matrix: . 11/5/86 Data Release Authorized By: __ **Date Sample Received:** Volatile Compounds Concentration: (Low Medium (Circle, One) 12/2/86 Date Extracted/Prepared: 12/2/86 Date Analyzed: . 7.64 Conc/Dil Factor:

Percent Moisture: (Not Decanted).

CAS Number		ug/l or ug/K (Circle Unit
74-87-3	Chloromethene	30 U
74-83-9	Bromomethane	30 U
75-01-4	Vinvi Chloride	30 V
75-00-3	Chloroethane	30 U
75-09-2	Methylene Chloride	31 B
67-64-1	Acatone	47
75-15-0	Carbon Disulfide	15 J
75-35-4	1. 1-Dichloroethene	15 J
75-34-3	1, 1-Dichloroemane	15 U
156-60-5	Trans-1, Z-Dichloroethene	15 V
67-66-3	Chloroform	15 V
107-06-2	1, 2-Dichlaroethane	15 J
78-93-3	2-Butanone	30 J
71-55-6	1, 1, 1-Trichloroethane	15 J
56-23-5	Carbon Tetrachloride	15 J
108-05-4	Vinvi Acetate	30 V
75-27-4	Bromodichloromethane	15 V

CAS Number	·	ug/ler({Circi	
78-87-5	1, 2-Dichloropropane	15	J
10061-02-6	Trans-1, 3-Dichloropropene	15	V
79-01-6	Trichtoroethene	15	J.
124-48-1	Dibromochloromemane	كم	U
79-00-5	1, 1, 2-Trichloroemane	15	J
71-43-2	Benzene	15	ر:
10061-01-5	cis-1, 3-Dichloropropens	15	U
110-75-8	2-Chloroethylvinviether	30	J
75-25-2	Bromotorm	15	
108-10-1	4-Methvi-2-Pentanone	Jo	÷.
591-78-6	Z-Hexenone	30	J
127-18-4	Tetrachloroethene	15	
79-34-5	1, 1, 2, 2-Tetrachioroethane	15	ų.
108-88-3 ·	Toluene	13	1
108-90-7	Chlorobenzene	15	4
100-41-4	Ethvibenzene	74	1
100-42-5	Styrene	15	2

15

J

Data Reporting Qualifiers

For reporting results to EPA the following results qualifiers are used Additional flags or factories expliciting results are encouraged. However, the Softmann of each flag must be explored.

NR

- Value II the result is a value greater than or equal to the detection limits report the value
- U Indicates compound was andrezed for but not perioded. Report the minimum projection limit for the sample with the UF 9 (12008800 on receiptary concentration reliant mains in all necessarily ing instrument selection limits). The footnare should read U-Compound asy analyzed for our not detected. The number is the minimum attainaged detection him for the sample.
- J Insectors in estimate estual. This tag is used entire when estimating a concentration for tensitively identified conductors over a 2-1 issocrite in assumed an union the mass social data indectes the assumed at a consource that meets the restrictist control but the result is tags than the social detection him but greater man evers or g, TGU. It hims of assection is 10 agert and a concentration of a loss than the reserved in 3U.

C This liquid points to best outer parameters where she adminification nee been conterines as QC VS. Single comparem possibles 210 ing unit mennes extracts stoud be contended to VGC VS. 1 This tude to use a when the angular is stoud in the same as well as a

Total Xylenes

- "Nis viag is used when the analytic sigund in the bidine as well as a sample – it – norcales possible-procede bidine (prishmilation and warns the data user to take appropriate actual
- No value required.

LABORATORY NAME: THA/ERE CASE NO: A4787

1 SAMPLE MANSER 1 1 142272 1

1

U U

SEMIVOLATILE CONFOUNDS

ORGANICS ANALYSIS DATA SHEET (PAGE 2)

 CONCENTRATION:
 LOM

 Date Extracted/Prepared:
 13/07/86

 Date Analyzed:
 12/24/86

 Conc Factor:
 1.007047

 Percent Hoisture:
 (Decated) (7

CONTINUOUS LIBUID

SPC CLEANUP

SEPARATORY FUNNEL EXTRACTION YES Continuous Liguid-Libuid Extraction yes

VES X NO

ŧ

CAS	NUMBE
-----	-------

CAS NUHBEI	-	U\$/)	18	CAS MUNIEE	R	US/H	
102-75-2	PHENOL	748,	U	82-32-9	ACENAPHTHEME		
111-44-4	BIS(2-CHLOROETHYL)ETHER	748.	U.	51-28-5	2. 4-OINITROPHENOL		
75-57-8	2-CHLOROPHENOL	760.	V	100-02-7	· · · · · · · · · · · · · · · · · · ·	4700.	
\$41-73-1	1.3-SICHLORGERNZENE	440.	U	132-44-9	DINENZOFURAN	394.	-
184-44-7	1.4-DICHLOROBENZENE	769.	U	121-14-2	2.4-CINITROTOLUENE	749.	_
1 ** ****	BENZYL ALCOHOL	760,	IJ	484-28-2	2. 4-DINITROTOLUENE	748.	_
? 5-5 0-1	1.2-DICHLOROBENZENE	769,	Ú.	24-44-2	DIETHYL PHTHALATE	769.	-
15-48-7	2-HETHYLPHENCH	769,	U	7945-72-3	4-CHLOROPHENYL-PHENYLETHER	744.	-
39638-32-9	#IS(2-CHLORDISDPROPYL)STHER	740,	Ū.	\$6-73-7	FLUGRENE	830.	_
184-45-5	4-HETHYLPHENOL	748.	u	100-10-4	4-NITRGANILINE		
421-64-7	N-NITROSO-GI-H-PROPYLANINE	740.	u	\$24-52-1	4.4-DINITEG-2-METHVLPHENGL		
67-72-1	HEXACHLOROETHANE	748.	u	84-78-4	N-NITROSCOIPHENVLAMINE (1)	744.	_
+a-+#X	HITROBENZENE	740.	-	101-58-3	4-BRONOPHENYL-PHENYLETHER	768.	_
72-57-1	ISOPHORONE	769.	Ű	118-74-1	HEXACHLOROPENZENE	744.	
88-75-5	2-NITROPHENOL	768.	U.	87-84-5	PENTACHLOROPHENGL		
185-67-7	2.4-DIMETHYLPHENDL	740.	Ū.		PHENANTHRENE		
45-83-4	BENZDIC ACID	788.	ŧ	120-12-7	ANTHRACENE		
111-+1-1	SIS(2-CHLOROETHOXY)METHANE	760.	Ū.	84-74-2	DI-N-BUTYLPHTHALATE		
128-83-2		768.	-	294-44-0	FLURANTHENE		
128-82-1	1. 2. 4-TRICHLOROBENZENE	748.	Ŭ	127-44-4	FYRENE		
71-20-3	NAPHTHALENE	740.	ŭ	15-48-7	BUTYLBENZYLPHTHALATE	7344. 768. :	**
144-47-8		768.		71-74-1	3.3"-OICHLOROBENZIDINE 1		-
\$7-68-J		740.	-	\$4-55-3	TENZO(A)ANTHRACENE		ù.
\$7-58-7		748.	-	117-81-7	BIS (2-ETHYLHEXYL) PHTHALATE		
11-57-4		748.	-	218-41-7			
77-47-4		760.	-	117-84-0	DI-N-OCTYL PHTHALATE	1469.	
88-44-2		760.	-	2+5-++-2			9
*****	2.4.1-TRICHLORDPHENOL			207-05-7	TENZO(B)FLUGRANTHENE		
*1-58-7		744.	-	54-32-6	EENZO (K) FLUORANTHENE		
	2-NITROANILINE			193-39-5	THORNOUS 2 THORNOUS 2		
131-11-3	· · · · · · · · · · · · · · · · · · ·	768.		53-7-3		249,	
288-94-2	a state of a second second second	748.	-	33-74-3 171-24-2	DIRENZ(A.H)ANTHRACENE 1		
17-44-2	3-HITROANILINE			*******	BENZO (G. H. I) PERYLENE I	448,	
			v				

(1) - CANNOT BE SEPARATED FROM DEPHENYLANINE

FORM I

Sediment Data: Volatile Organics In RAP Area Streams

Laboratory Name THYERG, Inc. Case No. OEPA A4989

Sample Number 162272

Organics Analysis Data Sheet (Page 3)

Pesticide/PC8s

Concentration: 🗔 Max	tium (Circle One)
Date Extracted/Prepared:	1+7-84
Date Analyzed:	2-3-87
Conc/Dil Factor:	<u> </u>
Percent Moisture (decented)	(7

Separatory Funnel Extraction @Yes Continuous Liquid - Liquid Extraction @Yes

GPC Cleanup Cives ONo

٤

• *****

CAS.	. · ·	ug/i orug/Kg (Circle Crist)
319-84-6	Alona-BHC	24 0
319-85-7	Bera-BHC	24 0
319-86-8	Cena-BHC	24 0
58-89-9	Gamma-BHC (Lincane)	24 0
78-44-8	Neptachior	24 0
309-00-2	Algrin	24 0
1024-57-3	Heotachior Eposide	24 U
959-98-8	Endosudan i	24 0
60-57-1	Oreidrin	48 U
72-55-9	4. 4'-ODE	48 U
72-20-8	Enorin	48 · U
33213-65-9	Endosuilan II	4B U
72-54-8	4, 4'-000	48 U
1031-07-8	Endosultan Sulfate	48 U
50-29-3	4 4'-00T	48 U
72-43-5	Methoavettion	240 0
53494-70-5	Enoria Kelone	48 0
57-74-9	Chiercane-	240 0
8001-35-2	Toxephene	480 0
12674-11-2	Araciar-1016	240 0
11104-28-2	Aroctor-1221	240 U
11141-16-5	Arocior-1232	240 0
53469-21-9	Arocior-1242	240 U
12672-29-6	Arocier-1248	240 0
11097-69-1	Arocior-1254	480 0
11096-82-5	Arocier-1260	480 U
	MIREX	4 <u>8</u> U

V₂ = Volume of extract injected (ui)

- V₈ = Volume of water extracted (mit)
- W_a * Weight of sample extracted (g)

لمسر 1000

يلىرە.1

V_t = Volume of total extract (ui)

9.9 a

DRY WT.

APPENDIX B

Package Sewage Treatment Plant Data

PACKAGE SEWAGE TREATMENT PLANTS

APPENDIX B PACKAGE SEWAGE TREATMENT PLANT EFFLUENT DATA

- NOTE: There are many package plants in the RAP Area, and most of them do not have NPDES Discharge Permits; and consequently, there are no data available on what they are discharging. The data in this table covers package plants in Lucas County, most of which are or were operated by the Lucas County Sanitary Engineer, and in all likelihood, are better operated and maintained than the "typical" package plant. Two of these plants (Corey Meadows and Lincoln Green) are no longer in use. Data for these plants is included here as examples of package plant discharge.
- SOURCE: Lucas County Facilities Plan⁵

PACKAGE PLANT DATA Maumee Basin Plants with NPDES Permits

	FLOW RATE Avg, gpd		•		1982	Avg BOD				1982	Avg SS	TOTAL S 1979	•		1982	-		P (est 1980	•	NDS F 1982	ILTERS?
Bentbrook	88,200		30.2				•	6,057	•	•		•	6,484		•		848	883	985	1,046	
Corey Meadows Lincoln Green	62,100 117,800	38.6		48.7	42.1	1,162	-	10,533	-	10,235	1,463	11,962	-	10,929	11,600	1,256	1,127	1,245	1,422	1,230	
Oak Openings Ind Oak Terrace	48,100 61,200		11.3 15.2				483 820	339 526	714 5,195	1,594 4,535		1,109 1,226		1,349 7,097	2,578 4,226		210 314	189 254	318 553	454 371	Y Y

EXTENDED AERATION PACKAGE PLANT EFFLUENT DATA

Source: Lucas	County F	acili	ties	Plan,	Append	ix F	
PACKAGE PLANT PACKAGE PLANT NPDES PERMIT N	NUMBER:	\mathbf{L}	ENTBI -68 702	ROOK FA	ARMS		
MONTH/YEAR	FLOW	μ	CL2	BOD			Coliform
January 1979 February March April May June July August September October November December	.079 .080 .089 .101 .113 .057 .066 .083 .063 .063 .058 .069 .096	67999 6999 6766.7 677 677 6780 6780	• •	23.414.327.318.314.022.710.623.310.211.011.558.1	$\begin{array}{c} 29.3 \\ 15.2 \\ 315.2 \\ 15.8 \\ 17.7 \\ 6.8 \\ 7.9 \\ 13.7 \\ 15.7 \\ 45.7 \end{array}$	055532378936 	71.0 23.0 19.0 31.0 21.0 32.0 11.0 180.0 6.0 9.0 31.0 1,198.0
	79,500 348		5.2	20.4			136.0
January 1980 February March April	.080 .070 .091	7.0 6.9 6.9	.6 .6	65.2 25.0 8.5	$ \begin{array}{r} 41.5 \\ 21.6 \\ 13.0 \end{array} $	3.3	1,319.0 96.0 12.0
May June July August September October November December	.030 .070 .091 .114 .108 .080 .116 .080 .058 .062 .052	6.9 7.1 7.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	66666645	6.2 54.7 6.3 7.1 12.7 42.5 11.9	8.2 54.3 7.4 13.3 AH 26.0 56.7 15.0	3.3 2.7 3.2 2.1 3.6 1.6 3.3 3.0	3.0 337.0 3.0 6.0 AH 36.0 1,240.0 302.0
	82,818 333	6.9	4.7		25.7 195.3	3.0 24.8	335.4
January 1981 February March April May June July August September October November December	.076 .072 .090 .098 .099 .079	666676666666 7666666666666666666666666	AH AH AH • 66 • 66 • 66 • 66 • 5H	12.6	71.6 92.0 38.3 40.2 23.9 24.7 40.6 35.6 48.5 48.2 40.6 24.2	3 3 3 3 3 3 3 3	AH AH 54.0 61.0 25.0 15.0 280.0 460.0 1,100.0 AH
AVERAGES TOTALS	92,417 405	6.8	.6 3.6	42.2 423.3	39.1 391.9	2.7 26.7	285.0
January 1982 February March April May June July August September October November	.105 .081 .143 .102 .123 .178 .118 .061 .065 .062	6.80 77.09 6.87 6.89 6.89 6.66 6.98 9.9	AH AH AH • 5 • 6 • 5 • 4 AH	23.6 51.7 58.0 43.8 7.7 23.0 23.0 22.9 16.9	18.2 49.0 50.6 26.0 43.5 39.6 10.5 13.5 12.4 14.5	3.00 43.14 33.3560 24 33.3560 24 33.35 20 20 20 20 20 20 20 20 20 20 20 20 20	AH AH AH 265.0 56.0 109.0 15.0 100.0 AH
December	.080	7.0	AH	25.3	19.6	3.3	AH
AVERAGES TOTALS	98,083 430	6.9	2.4	29.6 314.4	25.4 269.8	$3.1 \\ 32.9$	109.0

PACKAGE PLANT		Ç	OREY	MEADOW	S		
PACKAGE PLANT NPDES PERMIT N	UMBER:	G	-75 701	*AD			
MONTH/YEAR	FLOW	PH	CL2	BOD	SS		Coliform
January 1979 February March April May June July August September October November December	.059 .047 .045 .072 .068 .059 .075 .051 .040 .043 .051 .082	6.77 6.77 6.80 6.08 7.08 6.07 6.07 6.07 6.07 6.07 6.07 6.07 6.07		2.7 1.8 7.0 1.5 2.0 6.1 3.2 3.8	$\begin{array}{c} 29.29\\ 9.4\\ 7.7\\ 49.5\\ 13.5\\ 15.06\\ 8.6\end{array}$	2.5461 3.461 3.1899595 12.97	$ \begin{array}{c} 10.0\\ 2.0\\ 2.0\\ 1.0\\ 14.0\\ 2.0\\ 3.0\\ 3.0\\ 7.0\\ 1.0\\ 2.0\\ \end{array} $
AVERAGES TOTALS	57,667 253	6.8	3.7	4.6 29.0	8.3 51.9	3.0 18.8	4.1
January 1980 February March April	.071 .044 .070	6.9 6.9 6.8	.5 .6 .6	17.4 7.6 2.8	$23.3 \\ 12.9 \\ 7.8$	3.5 3.2 3.3	18.0 3.0 2.0
May June July August September October November December	.076 .071 .056 .082 .058 .045 .043 .046	6.9 6.8 6.7 6.8 6.7 6.7 6.7 6.7	.6 .6 .5	1.0 9.1 6.0 AH 2.5 1.9 2.8	1.8 1.6 53.0 8.4 AH 8.8 4.9 10.9	3.2 2.5 1.2 2.8 3.2 3.2 3.2 2.8 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	1.0 1.0 11.0 5.0 AH 2.0 156.0 1.0
AVERAGES TOTALS	60,182 242	6.8	3.4	5.2 28.5	$13.3 \\ 73.7$	3.0 17.8	20.0
January 1981 February March April May June July August September October November December	.043 .058 .061 .055 .062 .065 .064 .047 .101 .068 .080 .061	7	AH AH AH • 6 • 6 • 6 • 6 • 5 • 6 AH	2.9 12.6 2.2 1.0 1.7 1.9 8.4 10.7 9.8 6.8	3.4 16.1 3.20 1.3 3.1 3.1 3.1 3.1 5 7.7 8 10	3.722.19 32.221.9 12.7526 22.19 12.7526	AH AH AH 1.0 1.0 3.0 9.0 13.0 2.0 AH
AVERAGES TOTALS	63,750 279	6.8	2.5	5.2 36.0	7.0 48.4	2.5 17.0	4.3
January 1982 February March April May June July August September October November December	.075 .063 .108 .091 .061 .067 .057 .047 .062 .048 .055 .073	6.880 76.87 66.77 66.77 66.77 66.77 66.77 77.10	AH AH AH ·5 ·5 ·4 ·4 AH AH	10.1 6.3 12.6 3.7 4.6 3.4 3.5 2.4 3.5 3.5 3.1 32.2 1.8	$ \begin{array}{c} 13.2\\ 12.2\\ 23.8\\ 4.5\\ 10.5\\ 3.5\\ 4.4\\ 4.6\\ 3.6\\ \end{array} $	3.45 23.33 23.33 24.5 23.33 24.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	AH AH AH AH 5.0 5.0 11.0 10.0 7.0 AH AH
AVERAGES TOTALS	66,667 292	6.8	.4 1.5	$\begin{array}{r} 7.1 \\ 51.6 \end{array}$	10.8 78.1	2.9 20.8	7.6

PACKAGE PLANT PACKAGE PLANT NPDES PERMIT		L	INCO -49 704	LN GREI *AD	EN	·	
MONTH/YEAR	FLOW		CL2	BOD	SS		Coliform
January 1979 February March April May June July August September October November December	.109 .075 .105 .142 .141 .094 .091 .127 .092 .078 .093 .122	6.78 66.78 66.99 66.99 66.77 66.77 66.77 66.77 66.77 67.00		13.52 38.55 6.4 5.7 2.9 3.4 16.5 93.4 33.0	9.7 44.8 9.3 8.3 8.6 2.7 5.0 193.2 128.8 28.0	3.1 3.5 3.2 3.2 3.1 3.1 5 8 6 5 7 3.7	$\begin{array}{r} 22.0\\ 225.0\\ 14.0\\ 6.0\\ 8.0\\ 3.0\\ 2.0\\ 3.0\\ 3.0\\ 33.0\\ 4,021.0\\ 303.0\end{array}$
AVERAGES TOTALS	105,750 464	6.8	6.9	18.9	37.1 425.7	3.2	387.0
January 1980 February March April	.119 .102 .161	$7.1 \\ 6.9 \\ 6.9 \\ 6.9$	• 6	$64.1 \\ 29.4 \\ 42.3$	72.6 18.0 51.2	3.5 3.4 3.5	103.0 124.0 135.0
January 1980 February March April May June July August September October November December	.143 .134 .094 .106 .102 .091 .093 .140	7.19 6.89 7.29 7.00 7.8	.66 .66 .76 .66	6.0 10.4 5.7 20.0 AH 7.7 89.2 21.2	4.8 18.3 AH	3.1 3.2 2.5 2.4 2.9 2.5	6.0 8.0 40.0 AH 11.0 779.0 42.0
AVERAGES TOTALS	116,818 469			29.6 317.2	38.1 407.9	2.9 34.2	
January 1981 February March April May June July August September October November December	.128 .123 .131 .184 .101	777666869998		126.7 106.5 35.7 20.7 24.4 15.8 26.8 14.7 4.1 3.5 5.0	117.671.522.013.228.910.724.08.616.25.12.42.7	390182843358 33.0182843358	299.0 533.0 58.0 46.0 56.0 15.0 47.0 47.0 10.0 12.0 2.0 <u>AH</u>
AVERAGES TOTALS	133,333 584	6.8	.6 7.8	32.2 465.8	26.9 3 89.0	2.9 41.4	98.4
January 1982 February March April May June July August September October November December	.098 .122 .161 .158 .109 .107 .103 .095 .102 .099 .107 .123	988988879890 66666666667	AH AH AH • 5 • 5 • 5 • 5 • 5 • 4 AH AH	17.415.715.847.235.446.810.610.522.421.8101.0		356 226 39490 384 184 384	AH AH AH 199.0 29.0 16.0 55.0 166.0 AH AH
AVERAGES TOTALS	115,333 506	6.8	2.7	29.1 364.3	33.0 412.9	3.0 37.3	93.0

PACKAGE PLANT NAME: PACKAGE PLANT NUMBER: NPDES PERMIT NUMBER: OAK OPENINGS INDUSTRIAL PARK L-52 2PH00013*CD

MONTH/YEAR	FLOW	рH	CL2	BOD	SS	DO	Coliform
January 1979 February March April May June July August September October November December	.013 .032 .037 .030 .024 .027 .034 .038 .034 .034 .065 .046	6667 6667 66666667		$ \begin{array}{r} 1.5\\ 3.7\\ 3.2\\ 5.9\\ 1.4\\ 2.8\\ 16\\ 4.2\\ 16\\ 16\\ 4.2\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16$	6.5 112.2 123.6 8.0 2.5 11.4 21.3	3.75 3.74 3.877 3.877 3.877 3.877 3.877 575 4.5	3.0 7.0 5.0 13.0 21.0 7.0 3.0 2.0 1.0 6.0 17.0
AVERAGES TOTALS	34,545 139	6.9	2.1	4.6 15.9	10.5 36.4	3.7 12.7	7.7
January 1980 February March April	.052 .029 .029	7.0 6.9 6.9	.5 .6 .6	$4.7 \\ 3.6 \\ 4.0$	$13.0 \\ 8.6 \\ 12.0$	4.6 4.2 4.1	7.0 1.0 3.0
May June July August September October November December	.025 .023 .020 .021 .021 .042 .038 .041	6.9 6.7 6.9 6.9 6.7 6.7 6.7		3.0 3.1 2.1 2.0 AH 7.0 2.8	11.1 5.9 5.4 4.9 AH 22.9 10.3	4.1 4.5 3.4 2.8 2.3 2.9	2.0 2.0 1.0 3.0 AH 2.0 290.0 1.0
AVERAGES TOTALS	31,000 125	6.8	1.7	3.6 9.3	10.5 27.0	3.5 10.8	31.2
January 1981 February March April May June July August September October November December	.037 .046 .051 .044 .052 .060 .063 .048 .051 .056 .056 .056	666666666666 6666666666666666666666666	AH AH AH • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6	3.5127 5.127 3.17 6.80 7.50	$\begin{array}{c} 3.8\\ 13.4\\ 10.8\\ 5.36\\ 5.56\\ 6.0\\ 11.0\\ 14.52\\ 11.2\\ $	285162044116 344044116 34443443	AH AH AH 5.0 2.0 5.0 4.0 3.0 11.0 15.0 AH
AVERAGES TOTALS	52,167 229	6.7	.6 2.1	4.5 25.4	8.5 48.0	3.8 21.2	6.4
January 1982 February March April May June July August September October November December	.063 .067 .101 .067 .078 .064 .063 .082 .062 .062 .075 .068	699999878890 6	AH AH AH • • 6 • • 4 • • 5 • • 4 AH AH	$ \begin{array}{c} 15.3\\ 11.3\\ 4.56\\ 4.10\\ 2.9\\ 4.59\\ 4.59\\ 3.3\\ 9.3\\ \end{array} $	21.317.312.37.96.512.27.12.27.129.528.22.229.528.2	971976241595 3973233333	AH AH AH 24.0 62.0 13.0 5.0 21.0 AH AH
AVERAGES TOTALS	74,500 327	6.9	.5 1.8	7.0 56.7	11.4 91.7	3.5 28.6	25.0

PACKAGE PLANT PACKAGE PLANT NPDES PERMIT N	BER:					ISION	
MONTH/YEAR	FLOW	pH	CL2	BOD	SS	DO	Coliform
January 1979 February March April May	, .u. u un						
Juñe July August September October November <u>December</u>	.047 .037 .054 .062 .045 .064	6.8 6.8 6.8 6.7 7.0		1.3 2.2 2.1 22.1 2.7 2.4 3.8	4.3 1.3 5.1 24.5 8.3 5.2 6.0	6.3 3.5 2.7 4.0 4.4 4.7	$ \begin{array}{r} 3.0\\ 1.0\\ 3.0\\ 27.0\\ 1.0\\ 3.0\\ 3.0\\ 3.0 \end{array} $
AVERAGES TOTALS	51,500 113	6.8	6 1.8	5.2 18.0	7.8 26.9	4.2 14.3	5.9
January 1980 February March April	.046 .042 .031	7.0 6.9 6.9	.5 .6 .6	2.0 3.9 2.6	$4.5 \\ 6.4 \\ 4.6$	4.5 4.2 4.2	1.0 2.0 1.0
May June July August September October November December	.045 .050 .040 .046 .043 .033 .033 .049	6.8 7.6 6.6 6.8 6.9 6.7	66666655	7. 7. 7	8.8 17.9 6.0 .7 AH 4.6 6.1 5.3	4.1 4.0 3.8 3.1 2.2 2.1 2.6 3.1	4.0 20.0 2.0 1.0 AH 2.0 1.0 2.0
AVERAGES TOTALS	41,636 167	6.8	.6 2.4	4.2 15.9	6.5 24.8	3.4 14.4	3.6
January 1981 February March April May June July August September October November December	.059 .089 .201 .156 .159 .106 .067 .051 .051 .051 .054 .055	6 6 6 6 6 6 6 6	655666666666666	45.1	4.1 4.0 7.3 3.4 5.3 6.7 7.4 2.3 13.3 63.0 44.0 147.0	2.7	2.0 2.0 6.0 4.0 5.0 2.0 47.0 110.0 280.0 AH
AVERAGES TOTALS	90,833 398	6.7	.6 5.3	18.8 184.9	25.7 252.6	3.1 30.9	42.6
January 1982 February March April May June July August September October November December	.052 .058 .050 .056 .078 .077 .059 .066 .070 .049 .054 .062	67.0888877 66688877 66666666666666666666666	AH AH AH .5 .6 .4 .4 .4 AH AH	76.0 73.0 23.7 26.0 4.4 4.9 4.7 18.4 3.9 30.9 6.6 20.8	49.0 69.0 18.6 22.6 4.2 4.4 9.9 3.0 37.2 14.6 34.7	4.2 3.9 3.4 3.3 3.1 2.1 5 3.4 4.7	AH AH AH 26.0 24.0 27.0 13.0 111.0 AH AH
AVERAGES TOTALS	60,917 267	6.8	.5 1.4	24.4 161.4	22.8 150.4	$3.5 \\ 23.1$	40.2

APPENDIX C

NPDES Permits in the RAP Area

20

APPENDIX C NPDES DISCHARGE PERMITS IN THE RAP AREA

SOURCE: NPDES permits supplied by Ohio EPA

NPDES & PACKAGE PLANT NO. AND PERMIT STATUS	FACILITY NAME AND ADDRESS LOCATION, COUNTY, AND CITY	RECEIVING S BASIN, SUB-BASIN, WATER	TREAM(S) SHED #, & RAP STATUS	RIVER MILE	CAPACITY mgd	FLOW NOW mgd	ANNUAL FLOW MG/Year
PKG PLANT: n/a 21G00006*ED OUTFALL: EXPIR. DATE: 10/24/88 STATUS: Expired	Ashland Oil Company 3147 Jessie St Toledo Terminal Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 015 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: Runoff, ship ball			0.018	0.018	0.5
PKG PLANT: L-68 2PG00002*BD OUTFALL: 001 EXPIR. DATE: 09/13/92 STATUS: To be sewered 1988	Bentbrook Farms 1 Government Center Suite 800 5447 Sturbridge Road Lucas County, Sylvania OLD NAME(S):	WTRSHED NO: 004 SUB-BASIN: Ottawa River STREAM: Ten Mile Creek VERIFIED? Yes WASTE: Sewage	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 0.0	0.060	0.120	3.7
PKG PLANT: n/a 21W00010*AD OUTFALL: 001 EXPIR. DATE: 12/01/79 STATUS: Expired	Bowling Green WTP 304 N. Church St 17549 W. River Rd & Hull-Prairie Rd Wood County, Plain Twp. OLD NAME(S):	WISHED NO: 045 SUB-BASIN: STREAM: Hull-Prarie Road VERIFIED? Yes WASTE: WTP backwash	BASIN: Maumee *RAP? Yes *PRE? No Ditch	R.M. :	8.000	5.550	168.9
	CSX - Chessie - Presque Isle P.O. Box 45052 Presque Isle, nr Otter Cr & Bayshore Rds Lucas County, Oregon OLD NAME(S): C&O, Chessie	WTRSHED NO: 028 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: Runoff, sewage		0.1	0.003	0.003	0.1
PKG PLANT: n/a 2IT00002*CD OUTFALL: EXPIR. DATE: 02/17/92 STATUS: Active	CSX - Chessie - Walbridge Terminal PO Box 45052 Union Street, Walbridge Wood County, Walbridge OLD NAME(S): C&O, Chessie	WTRSHED NO: 032 SUB-BASIN: Cedar STREAM: Cedar Creek VERIFIED? Yes WASTE: Runoff	BASIN: Lake Erie *RAP? Yes *PRE? No	R.M.: 0.0	0.000	0.000	0.0
PKG PLANT: L-71 2PY00000*DD OUTFALL: 001 EXPIR. DATE: 03/18/93 STATUS: Active	Centennial Manor 3230 Centennial Road 3230 Centennial Road Lucas County, Sylvania Two.	WTRSHED NO: 003 SUB-BASIN: Ottawa River STREAM: Ten Mile Creek VERIFIED? Yes WASTE: Sewage	BASIN: Maumee Bay	R.M.:	0.030	0.015	0.5
PKG PLANT: L-71 2PY00000*DD	Centennial Manor	WTRSHED NO: 003 SUB-BASIN: Ottawa River STREAM: Ten Mile Creek VERIFIED? Yes WASTE:	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 2.0	0.000	0.000	0.0
PKG PLANT: W-19 R 725 *AD OUTFALL: EXPIR. DATE: 06/30/77 STATUS: To be sewered in '88	I-280 & Hanley Rd. Wood County, Lake Two.	WTRSHED NO: 033 SUB-BASIN: Crane STREAM: Crane Creek VERIFIED? Yes WASTE: Sewage	BASIN: Lake Erie *RAP? Yes *PRE? No	0.0	0.030	0.030	0.9

NPDES & PACKAGE PLANT NO. AND PERMIT STATUS	FACILITY NAME AND ADDRESS LOCATION, COUNTY, AND CITY	RECEIVING STREAM(S) BASIN, SUB-BASIN, WATERSHED 2,	RIVER & RAP STATUS MILE	CAPACITY Mga	FLOW NOW d mgd	ANNUAL FLOW MG/Year
PKG PLANT: n/a 2IT00015*AD OUTFALL: 001 EXPIR. DATE: 04/13/90 STATUS: Active	Conrail 415 Emerald Ave. 415 Emerald Ave. Lucas County, Toledo OLD NAME(S): Penn Central	WTRSHED NO: 013 BASIN: Mau SUB-BASIN: Maumee River *RAP? Yes STREAM: Maumee River via unnamed tr VERIFIED? Yes WASTE: Runoff	mee R.M.: *PRE? No 0.0 ib.	0.000	0.000	
PKG PLANT: n/a 2IT00007*CD OUTFALL: EXPIR. DATE: 06/23/91 STATUS: Active	Conrail - Stanley Yard 435 Emerald Ave Stanley Yard, 29460 E Broadway, Moline Wood County, Lake Twp. OLD NAME(S):	WTRSHED NO: 032 BASIN: Lak SUB-BASIN: Cedar *RAP? Yes STREAM: Cedar Creek VERIFIED? No WASTE:	te Erie R.M.: *PRE? No 0.0	0.000	0.000	0.0
PKG PLANT: n/a 21q00012*BD QUTFALL: EXPIR. DATE: 02/24/92	Diversi Tech General PO Box 875 3729 Twinning St. Lucas County, Toledo	WTRSHED NO: 005 BASIN: Mau SUB-BASIN: Ottawa River STREAM: Ottawa River VERIFIED? Yes	mee R.M.: *PRE? No 6.0	0.100	0.100	3.0
PKG PLANT: n/a 21CO0021*FD OUTFALL: EXPIR. DATE: 03/20/92 STATUS: Active	Doehler-Jarvis/Farley, Plant 2 1945 Smead Ave., POB 902 5400 N. Detroit Ave. Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 020 BASIN: Mau SUB-BASIN: *RAP? Yes STREAM: Shantee Creek VERIFIED? Yes WASTE: Cooling water	mee Bay R.M.: *PRE? No 0.0	0.000	0.000	0.0
PKG PLANT: n/a 2IF00017*CD OUTFALL: EXPIR. DATE: 04/16/90 STATUS: Active	DuPont De Nemours, Formaldehyde Plant PO Box 6568, W. Toledo Stn 700 Matzinger Road Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 005 BASIN: Mau SUB-BASIN: Ottawa River *RAP? Yes STREAM: Ottawa River VERIFIED? Yes WASTE: Non-contact cooling water	mee Bay R.M.: *PRE? No 4.8	1.700	1.700	51.7
PKG PLANT: n/a ZIFO0016*DD OUTFALL: 001 EXPIR. DATE: 12/13/92 STATUS: Active	DuPont De Nemours, Formaldehyde Plant PO Box 6568, W. Toledo Stn 700 Matzinger Road Lucas County, Toledo OLD NAME(S): DuPont De Nemours, Paint Plant PO Box 953 1930 Tremainsville Rd., 43613 Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 020 BASIN: Mat SUB-BASIN: *RAP? Yes STREAM: Blodgett Ditch via storm se VERIFIED? Yes WASTE: Non-contact cooling water	unee R.M.: *PRE? No 0.0 wers	0.490	0.490	14.9
ZIF00016*DD OUTFALL: 002 EXPIR. DATE: 12/13/82 STATUS: Active	County, OLD NAME(S):	SUB-BASIN: *RAP? Yes STREAM: Blodgett Ditch via storm so VERIFIED? Yes WASTE:	WRE? No 0.0		0.000	0.0
PKG PLANI: N/A 2IC00060*AD OUTFALL: 001 EXPIR: DATE: 07/19/93	1510 Albon Rd 1510 Albon Rd Lucas County, Holland	WIRSHED NOT BASIN: MAI SUB-BASIN: Swan Creek *RAP? Yes STREAM: Wolf Creek VERIFIED? Yes	#PRE? No 0.0	0.009	0.009	0.3
PKG PLANT: n/a 2IN00013*CD OUTFALL: 001 EXPIR. DATE: 01/01/93 STATUS: Active	OLD NAME(S): Fondessy / Envirosafe Services of Ohio 876 Otter Creek Rd. 876 Otter Creek Rd. Lucas County, Oregon OLD NAME(S): Fondessey	WTRSHED NO: 028 BASIN: Mai SUB-BASIN: *RAP? Yes STREAM: Otter Creek VERIFIED? Yes WASTE: Runoff, sewage	umee Bay R.M.: *PRE? No 2.3	0.050	0.050	1.5
PKG PLANT: n/a 21J00039*FD OUTFALL: 001 EXPIR. DATE: 03/28/93 STATUS: Active	France Stone Co., Silica Plant PO Box 278, 8130 Brint Rd Centennial Road, Sylvania Lucas County, Sylvania OLD NAME(S):	WTRSHED NO: 003 BASIN: Mai SUB-BASIN: Ottawa River *RAP? Yes STREAM: Ten Mile Creek via Schreib VERIFIED? Yes WASTE: Dewatering quarry	umee Bay R.M.: *PRE? No 2.0	0.800	2.000	60.9
2IJ00039*FD OUTFALL: 002 EXPIR. DATE: 03/28/93 STATUS: Active	County, OLD NAME(S):	SUB-BASIN: Ottawa River *RAP? Yes STREAM: Ten Mile Creek via Schreib VERIFIED? Yes WASTE: Dewatering quarry				
ge No. C-2					NPDES DI	SCHARGE PERMITS
\sim						\frown
nakuntukan ang kanakan kanakan Da	attainey and a substances and a substances	and the second		<u></u>		<u></u>
÷.						

NPI PACKAGE PLANT NO.	FACILITY NAME AND ADDRESS LOCATION, COUNTY, AND CITY	RECEIVING STREAM(S) BASIW, SUB-BASIN, WATERSHED 3,	RIVER & RAP STATUS MILE	CAPACITY mga	FLOW NOW d mgd	AL FLOW MG/Year
PKG PLANT: n/a 2IJ00047*8D OUTFALL: 001 EXPIR. DATE: 03/31/87 STATUS: Expired	France Stone Co., Waterville 8130 Brint Road, PO Box 278 700 S.River Rd Lucas County, Waterville Twp. OLD NAME(S): Fuller's Creekside Estates 1 Government Center Suite 800 6064 Villamar Lucas County, Washington Twp. OLD NAME(S): General Mills PO Box 923 1250 Laskey Rd. Lucas County, Toledo OLD NAME(S): Harbor View, Village of 127 Lakeview Dr 127 Lakeview Dr 128 County, Harbor View OLD NAME(S): Haskins WWTP Village Hall, Church St. S.R. 64 and King Rd. Wood County, Middleton Twp. OLD NAME(S): Hydra-Matic 3044 W. Grant Blvd. 1455 West Alexis Rd Lucas County, Toledo OLD NAME(S): GMC Chevrolet Jeep 1000 Jeep Pkwy.	WTRSHED NO: 044 BASIN: Me SUB-BASIN: Maumee River *RAP? Yes STREAM: Maumee River VERIFIED? Yes WASTE: Dewatering quarry	umee R.M.: *PRE? No 22.2	0.300	0.300	9.1
PKG PLANT: L-96 2PH00000*BD OUTFALL: EXPIR. DATE: 04/23/93 STATUS: To be sewered 7/1/88	Fuller's Creekside Estates 1 Government Center Suite 800 6064 Villamar Lucas County, Washington Twp. OLD NAME(S):	WTRSHED NO: 021 BASIN: Ma SUB-BASIN: Portage *RAP? Yes STREAM: Shantee Creek VERIFIED? Yes WASTE: Sewage	umee Bay R.M.: ;*PRE? No 0.0	0.100	0.270	8.2
PKG PLANT: n/a 21H00093*BD OUTFALL: 001 EXPIR. DATE: 08/31/92 STATUS: Active	General Mills PO Box 923 1250 Laskey Rd. Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 023 BASIN: Ma SUB-BASIN: Silver Creek *RAP? Yes STREAM: Jamieson Ditch VERIFIED? Yes WASTE: Runoff, high BOD	aumee Bay R.M.: ;*PRE? Yes 0.0	0.000	0.000	0.0
PKG PLANT: n/a 2PA00012*CD OUTFALL: EXPIR. DATE: / / STATUS: Proposed Facility	Harbor View, Village of 127 Lakeview Dr 127 Lakeview Dr 127 Lakeview Dr Lucas County, Harbor View OLD NAME(S):	WTRSHED NO: BASIN: SUB-BASIN: *RAP? Yes STREAM: Lake Erie VERIFIED? Yes WASTE: Untreated sewage, septic ta	R.M.: ; *PRE? No 0.0 ank effluent	0.000	0.000	0.0
PKG PLANT: n/a 2PA00026*CD OUTFALL: EXPIR. DATE: 09/23/88 STATUS: Active	Haskins WWTP Village Hall, Church St. S.R. 64 and King Rd. Wood County, Middleton Twp. OLD NAME(S):	WTRSHED NO: 043 BASIN: Ma SUB-BASIN: *RAP? Yes STREAM: Liberty High Rd Ditch VERIFIED? Yes WASTE: Municipal Wastewater	sumee R.M.: ; *PRE? No 21.6	0.100	0.060	1.8
PKG PLANT: n/a 21C00026*CD OUTFALL: EXPIR. DATE: 08/01/82 STATUS: Expired	Hydra-Matic 3044 W. Grant Blvd. 1455 West Alexis Rd Lucas County, Toledo OLD NAME(S): GMC Chevrolet	WTRSHED NO: 023 BASIN: Me SUB-BASIN: *RAP? Yes STREAM: Silver Creek VERIFIED? Yes WASTE: Runoff	aumee Bay R.M.: s *PRE? No 0.0	0.000	0.100	3.0
PKG PLANT: n/a 21CO0022*CD OUTFALL: 001 EXPIR. DATE: 01/01/93 STATUS: Active	Jeep 1000 Jeep Pkwy. 940 North Cove Blvd Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 005 BASIN: Ma SUB-BASIN: Ottawa River *RAP? Yes STREAM: Ottawa River VERIFIED? Yes WASTE: Site runoff	aumee Bay R.M.: s *PRE? Yes 7.6	0.030	0.030	0.9
PKG PLANT: n/a 21C00022*CD OUTFALL: 002 EXPIR. DATE: 01/01/93 STATUS: Active	Jeep 1000 Jeep Pkwy. 940 North Cove Blvd Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 005 BASIN: Ma SUB-BASIN: Ottawa River *RAP? Yes STREAM: Ottawa River VERIFIED? Yes WASTE: Site runoff	aumee Bay R.M.: s *PRE? Yes 7.6	0.030	0.030	0.9
PKG PLANT: n/a 21C00022*CD OUTFALL: 003 EXPIR. DATE: 01/01/93 STATUS: Active	Jeep 1000 Jeep Pkwy. 940 North Cove Blvd Lucas County, Toledo OLD NAME(S): Jeep 1000 Jeep Pkwy. 940 North Cove Blvd Lucas County, Toledo OLD NAME(S): Jeep 1000 Jeep Pkwy. 940 North Cove Blvd Lucas County, Toledo OLD NAME(S): Jeep	WTRSHED NO: 005 BASIN: Ma SUB-BASIN: Ottawa River *RAP? Yes STREAM: Ottawa River VERIFIED? Yes WASTE: Site runoff	aumee Bay R.M.: * *PRE? Yes 7.6	0.030	0.030	0.9
PKG PLANT: n/a 2ICO0022*CD OUTFALL: 004 EXPIR. DATE: 01/01/93 STATUS: Active	OLD NAME(S): Jeep 1000 Jeep Pkwy. 940 North Cove Blvd Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 005 BASIN: Ma SUB-BASIN: Ottawa River *RAP? Yes STREAM: Ottawa River VERIFIED? Yes WASTE: Site runoff	aumee Bay R.M.: s *PRE? Yes 7.6	0.030	0.030	0.9

·-----

·-----

a a substance and a substance a

·-----

NPDES & PACKAGE PLANT NO. AND PERMIT STATUS	FACILITY NAME AND ADDRESS LOCATION, COUNTY, AND CITY	RECEIVING BASIN, SUB-BASIN, WA	STREAM(S) TERSHED 4, & RAP STA	RIVER TUS MILE	CAPACITY Mg	FLOW NOW d mgd	ANNUAL FLOW MG/Year
PKG PLANT: n/a 21C00056*BD OUTFALL: 001 EXPIR. DATE: 01/01/93 STATUS: Active	Kern-Liebers USA 1510 Albon Rd 1510 Albon Rd Lucas County, Springfield Twp. OLD NAME(S):	WTRSHED NO: 009 SUB-BASIN: Wolf Creek STREAM: Wolf Creek VERIFIED? Yes WASTE: Well water		4.1		0.032	1.0
PKG PLANT: n/a 2IN00079*AD OUTFALL: 001 EXPIR. DATE: 05/19/78 STATUS: Expired	King Road Senitary Landfill 111 S. McCord Rd 3535 King Rd. Lucas County, Sylvania Twp. OLD NAME(S):	WTRSHED NO: 004 SUB-BASIN: Ottawa River STREAM: Ottawa River VERIFIED? Yes WASTE: Leachate	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 4.5	0.000	0.310	9.4
PKG PLANT: n/a 2IN00020*DD OUTFALL: EXPIR. DATE: 09/27/90 STATUS: Active	Libbey Owens Ford - Plants #4 and #8 811 Madison 1701 E Broadway Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 028 SUB-BASIN: STREAM: Otter Creek VERIFIED? Yes WASTE: Glass mfg process	BASIN: Maumee Bay *RAP? Yes *PRE? No waste	R.M.: 6.6	0.100	0.100	3.0
PKG PLANT: n/a 2IN00030*ED OUTFALL: EXPIR. DATE: 06/30/82 STATUS: Expired	Libbey Owens Ford Float Glass Plant #6 811 Madison 140 Dixie Hwy Wood County, Rossford OLD NAME(S):	WTRSHED NO: 047 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: Runoff,Cooling, L	BASIN: Maumee *RAP? Yes *PRE? No agoon effluent	R.M.: 6.9	6.500	6.500	197.8
PKG PLANT: L-49 2PH00004*BD OUTFALL: 001 EXPIR. DATE: 09/13/92 STATUS: To be sewered 1988	Lincoln Green Subdivision 1 Government Center Suite 800 6520 Burnham Green Lucas County, Springfield Twp. OLD NAME(S):	WTRSHED NO: 004 SUB-BASIN: Swan Creek STREAM: Potter Ditch VERIFIED? Yes WASTE: Sewage	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 0.0	0.168	0.160	4.9
PKG PLANT: L-25 2IN00069*ED OUTFALL: 001 EXPIR. DATE: 08/11/93 STATUS: Active	Liquid Carbonic Corp. 135 S. LaSalle St 3742 Cedar Point Rd., 43616 Lucas County, Oregon OLD NAME(S):	WTRSHED NO: 028 SUB-BASIN: STREAM: Otter Creek VERIFIED? Yes WASTE: Sewage	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 1.9	0.002	0.002	0.1
PKG PLANT: n/a 2IG00024*8D OUTFALL: 001 EXPIR. DATE: 10/10/92 STATUS: Active	Marathon Oil Company 4131 Seaman Road 3855 York Lucas County, Oregon OLD NAME(S):	WTRSHED NO: 028 SUB-BASIN: STREAM: Driftmeyer Ditch VERIFIED? Yes WASTE: Runoff water	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 0.0	0.085	0.085	2.6
PKG PLANT: n/a 2PD00015*AD OUTFALL: EXPIR. DATE: 06/30/77 STATUS: Expired	Maumee Combined Sewer Overflows 214 Illinois Ave 214 Illinois Ave Lucas County, Maumee OLD NAME(S):	WTRSHED NO: 044, 078 SUB-BASIN: STREAM: Maumee VERIFIED? Yes WASTE: Sewage, storm run	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 0.0	0.000	0.000	0.0
PKG PLANT: n/a 2PK00000*DD OUTFALL: EXPIR. DATE: 09/15/90 STATUS: Active	Maumee River WHTP 1111 S McCord Rd 5858 North River Road, Waterville Lucas County, Monclova Twp. OLD NAME(S):	WTRSHED NO: 044 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: Municipal Wastewa	BASIN: Maumee *RAP? Yes *PRE? No	R.M.	15.000	9.010	274.2
PKG PLANT: n/a 21N00032 OUTFALL: EXPIR. DATE: 11/30/79 STATUS: Revoked	Medusa Portland Cement Company 2301 Front St., Toledo Sylvania, OH Lucas County, Sylvania OLD NAME(S):	WTRSHED NO: 003 SUB-BASIN: Ottawe River STREAM: Ten Mile Creek VERIFIED? No WASTE:	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 5.3	0.000	0.000	0.0
							COMADOR DEDMI

ĵ.

NP. PACKAGE PLANT NO.	FACILITY NAME AND ADDRESS LOCATION, COUNTY, AND CITY	RECEIVING BASra, SUB-BASIN, W	STREAM(S) TERSHED 5, & RAP STAT	RIVER IUS MILE	CAPACITY mg	FLOW NOW d mgd	JAL FLON MG/Year
PKG PLANT: n/a 2IN00072* OUTFALL: EXPIR. DATE: 04/13/83 STATUS: Expired, NPR?	Midland-Ross Surface Combustion Div. 2375 Dorr St 2375 Dorr St Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 005 SUB-BASIN: Ottawa River STREAM: Williams Ditch VERIFIED? Yes WASTE:		0.0	0.000	0.002	0.1
2IT00005*8D OUTFALL: 001 EXPIR. DATE: 10/25/88 STATUS: Expired	NOTTOLK Southern RR 8 N. Jefferson St 2750 Front St Lucas County, Toledo OLD NAME(S): N&W RR	WIRSHED NO: 015 SUB-BASIN: Maumee River STREAM: Duck Creek VERIFIED? Yes WASTE: Runoff	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 0.0	0.242	0.242	7.4
PKG PLANT: L-62 2PP00003*CD OUTFALL: EXPIR. DATE: 06/17/89 STATUS: Active	Oak Openings - Fallen Timbers Plaza 682 Prospect Turnpike near Shaffer Road Lucas County, Swanton Twp. OLD NAME(S):	WTRSHED NO: 007 SUB-BASIN: STREAM: Murbach Ditch VERIFIED? Yes WASTE: Sewage	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 0.0	0.150	0.110	3.3
2PH00013*CD OUTFALL: EXPIR. DATE: 06/17/89 STATUS: Active draft permit	1 Government Center Suite 800 1771 S. Eber Road @ Geiser Road Lucas County, Springfield Twp. OLD NAME(S):	SUB-BASIN: Swan Creek STREAM: Kujowski Ditch VERIFIED? Yes WASTE: Sewage	*RAP? Yes *PRE? No	0.0	0.180	0.110	3.3
PKG PLANI: L-37 2PH00014*CD OUTFALL: EXPIR. DATE: 09/03/89 STATUS: Active	Uak Terrace 1111 S. McCord Rd. 329 Oak Terrace Blvd. (Angola @ Irwin) Lucas County, Spencer Twp. OLD NAME(S):	WIRSHED NO: 009 SUB-BASIN: Swan/Wolf Cr STREAM: Butler Ditch VERIFIED? Yes WASTE: Sewage	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 0.0	0.100	0.100	3.0
PKG PLANI: L-102 21000003*AD OUTFALL: 001 EXPIR. DATE: 07/01/84 STATUS: Expired	Unio National Guard Toledo Express Airport Toledo Express Airport Lucas County, Springfield Twp. OLD NAME(S):	WIRSHED NO: U42 SUB-BASIN: Swan Creek STREAM: Zaleski Ditch VERIFIED? Yes WASTE: Sewage	BASIN: Maumee River *RAP? Yes *PRE? No	R.M.: 0.0	0.029	0.029	0.9
2PB00007*CD OUTFALL: EXPIR. DATE: 06/08/89 STATUS: Active	5350 Seaman Road, POB 7541 5760 Bayshore Rd. Lucas County, Oregon OLD NAME(S):	WIRSHED NO: U28 SUB-BASIN: STREAM: Lake Erie VERIFIED? Yes WASTE: Municipal Wastewa	*RAP? Yes *PRE? No	0.0	0.225	0.490	14.9
PKG PLANI: n/a 2IW00220*BD OUTFALL: EXPIR. DATE: 04/23/93 STATUS: Active draft permit	Oregon WIP 5350 Seaman Rd 5350 Seaman Rd Lucas County, Oregon OLD NAME(S):	WTRSHED NO: 029 SUB-BASIN: STREAM: Berger Ditch VERIFIED? Yes WASTE: WTP backwash wate	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 0.0	0.320	0.320	9.7
PKG PLANT: n/a 2PD00035*ED OUTFALL: EXPIR. DATE: 09/15/90 STATUS: Active	Oregon WMTP 5330 Seaman Rd Dupont Rd, N of Cedar Point Rd Lucas County, Oregon OLD NAME(S):	WTRSHED NO: 028 SUB-BASIN: STREAM: Maumee Bay VERIFIED? Yes WASTE: Municipal Wastewa	BASIN: Maumee Bay *RAP? Yes *PRE? No ter	R.M.: 0.0	8.000	4.310	131.2
PKG PLANI: n/a 2IN00075*BD OUTFALL: 001 EXPIR. DATE: 05/26/80 STATUS: Expired	Owens-Illinois, Libbey Plant 27 PO Box 919 940 Ash St Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 030 SUB-BASIN: Maumee River STREAM: Maumee River via VERIFIED? Yes WASTE: Cooling water,nor	BASIN: Maumee *RAP? Yes *PRE? No Co. Dt. No.1139 -contact	R.M.: 0.0	0.000	0.150	4.6

Page No. C-5

NPDES & PACKAGE PLANT NO. AND PERMIT STATUS	FACILITY NAME AND ADDRESS LOCATION, COUNTY, AND CITY	RECEIVING BASIN, SUB-BASIN, WA	STREAM(S) TERSHED 6, & RAP STAT	RIVER US MILE	CAPACITY	FLOW NOW pd mgd	ANNUAL FLOW MG/Year
PKG PLANT: n/a 2PD00002*CD OUTFALL: EXPIR. DATE: 06/28/87 STATUS: Expired	Perrysburg WWTP 201 W Indiana 1 West Boundary St Wood County, Perrysburg OLD NAME(S):	WTRSHED NO: 079 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: Municipal wastewat	BASIN: Maumee *RAP? Yes *PRE? No ter	R.M.: 14.5		3.000	91.3
PKG PLANI: n/a 2IG00013*CD OUTFALL: EXPIR. DATE: 05/10/92 STATUS: Active	Petroleum Fuel & Terminal Co. 2844 Summit Ave. 2844 Summit Ave. Lucas County, Toledo OLD NAME(S): Shell. Apex	WTRSHED NO: 015 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: Runoff	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 2.2	0.000	0.000	0.0
PKG PLANT: n/a 21F00000*CD OUTFALL: EXPIR. DATE: 03/26/90 STATUS: Active	Plaskon Electronic Materials 2829 Glendale Ave 2829 Glendale Ave Lucas County, Toledo OLD NAME(S): Allied Chemical	WTRSHED NO: 013 SUB-BASIN: Maumee River STREAM: Delaware Creek VERIFIED? Yes WASTE: Cooling water,non-	BASIN: Maumee *RAP? Yes *PRE? Yes contact	R.M.: 1.2	0.071	0.071	2.2
PKG PLANT: L-86 21S00008*ED OUTFALL: 002 EXPIR. DATE: 06/15/91 STATUS: Active	Plaskon Electronic Materials 2829 Glendale Ave 2829 Glendale Ave Lucas County, Toledo OLD NAME(S): Allied Chemical Reichert Stamping 8200 W. Central Ave. 8200 W. Central Ave. Lucas County, Syvlania TWp. OLD NAME(S): Toledo Steel Tube	WTRSHED NO: 003 SUB-BASIN: Ottawa River STREAM: Ten Mile Creek v VERIFIED? Yes WASTE: Sewage	BASIN: Maumee Bay *RAP? Yes *PRE? No ia storm sewer	R.M.: 5.1	0.008	0.008	0.2
PKG PLANT: n/a 21G00010*DD OUTFALL: 001 EXPIR. DATE: 07/13/93 STATUS: Active	Standard Oil - Hill Ave Terminal 4850 E 49th St. 2450 Hill Ave., 43607 Lucas County, foledo OLD NAME(S):	WTRSHED NO: 004 SUB-BASIN: Ottawa River STREAM: Fleig Ditch VERIFIED? No WASTE: Runoff	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 11.1	0.003	0.003	0.1
PKG PLANT: n/a 21G00007*DD OUTFALL: EXPIR. DATE: 09/02/90 STATUS: Active	Standard Oll - Toledo Refinery PO Box 696 SE cor. Cedar Point Rd & Bay Shore Lucas County, Oregon OLD NAME(S):	WTRSHED NO: 028 SUB-BASIN: STREAM: Maumee Bay VERIFIED? Yes WASTE: Refinery & sewage	BASIN: MAUNEE *RAP? Yes *PRE? No	R.M.: 0.4	22.000	25.000	760.9
PKG PLANT: n/a 2IJ00052*CD OUTFALL: 001 EXPIR. DATE: 06/02/92 STATUS: Active	Stoneco - Lime City Plant PO Box 29A, 221 Allen St. US 20, 8812 Fremont Pike Wood County, Perrysburg OLD NAME(S): Maumee Stone Co.	WTRSHED NO: 032 SUB-BASIN: Cedar Creek STREAM: Dry Creek via di VERIFIED? Yes WASTE: Quarry runoff	BASIN: Maumee *RAP? Yes *PRE? No tch	R.M.: 0.0	U.216	0.216	6.6
PKG PLANI: n/a 2IJ00048*CD OUTFALL: 001 EXPIR. DATE: 03/20/93 STATUS: Active	Stoneco ~ Maumee Plant PO Box 29A, 221 Allen St. 3845 Ford St Lucas County, Monclova Twp. OLD NAME(S): Maumee Stone Co.	WIRSHED NO: 041 SUB-BASIN: Swan Creek STREAM: Graham Ditch VERIFIED? Yes WASTE: Dewatering quarry	*RAP? Yes *PRE? No	0.0	0.435	0.435	13.2
PKG PLANT: n/a 21G00009*CD OUTFALL: EXPIR. DATE: 07/05/92 STATUS: Active (draft)	Sun Petroleum - Marine Terminal PO Box 920 1900-2100 Front Street, Toledo Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 015 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: Runoff	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 6.5	0.001	0.001	0.0
21600003*FD	PO Box 920 1819 Woodville Rd Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 028 SUB-BASIN: STREAM: Otter Creek VERIFIED? Yes WASTE: Refinery, runoff,	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.:	3.000	3.000	91.3

1

	FACILITY NAME AND ADDRESS LOCATION, COUNTY, AND CITY					FLOW NOW 3d mgd	AL FLOW MG/Year
PKG PLANT: n/a 21000001*BD OUTFALL: 001 EXPIR. DATE: 09/20/92 STATUS: Active	Teledyne Industries 1330 Laskey Road 1330 Laskey Road Lucas County, Toledo OLD NAME(S): Toledo Bay View Park WMTP 1 Govt Center, Ste 1500 3900 N Summit, 43611 Lucas County, Toledo OLD NAME(S): Toledo Coke 436 7th Ave.	WTRSHED NO: 023 SUB-BASIN: STREAM: Silver Creek VERIFIED? Yes WASTE: Runoff, non-contac	BASIN: Maumee Bay *RAP? Yes *PRE? No ct cooling	R.M.: 0.0	0.069	0.069	2.1
PKG PLANT: n/a 2PF00000*GD OUTFALL: EXPIR. DATE: 12/27/90 STATUS: Active	Toledo Bay View Park WMTP 1 Govt Center, Ste 1500 3900 N Summit, 43611 Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 015 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: Municipal Wastewat	BASIN: Maumee *RAP? Yes *PRE? No :er	R.M.: 1.4	102.000	91.150	2774.4
EXPIR. DATE: 01/01/93 STATUS: Active	Lucas County, Toledo OLD NAME(S): Koppers	VERIFIED? Yes WASTE: Runoff, Non-contac	ct cooling water			3.730	113.5
PKG PLANT: 0/8 21W00260*BD OUTFALL: 002 EXPIR. DATE: 10/23/92 STATUS: Active	PO Box 786 York St @ Collins Park Ave Lucas County, Toledo OLD NAME(S):	WIRSHED NC: 014 SUB-BASIN: Maumee Bay STREAM: Otter Creek VERIFIED? Yes WASTE: WTP Backwash	*RAP? Yes *PRE? No	K.M.: 3.4	0.000	0.000	0.0
PKG PLANT: n/a 21w00260*BD OUTFALL: 003 EXPIR. DATE: 10/23/92 STATUS: Active	Toledo Collins Park WTP PO Box 786 York St & Collins Park Ave Lucas County, Toledo OLD NAME(S): Toledo Collins Park WTP PO Box 786 York St & Collins Park Ave Lucas County, Toledo OLD NAME(S): Toledo Collins Park WTP	WTRSHED NO: 015 SUB~BASIN: Maumee Bay STREAM: Duck Creek VERIFIED? Yes WASTE: WTP Backwash	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 3.4	0.000	0.000	0.0
PKG PLANT: n/a 21W00260*BD OUTFALL: 004 EXPIR. DATE: 10/23/92 STATUS: Active	Toledo Collins Park WTP PO Box 786 York St @ Collins Park Ave Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 014 SUB-BASIN: Maumee Bay STREAM: Otter Creek VERIFIED? Yes WASTE: WTP Backwash	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 3.4	0.000	0.000	0.0
ZIWOZGO*BD OUTFALL: 005 EXPIR. DATE: 10/23/92 STATUS: Active	PO Box 786 York St @ Collins Park Ave Lucas County, Toledo	SUB-BASIN: Maumee Bay STREAM: Duck Creek VERIFIED? Yes	*RAP? Yes *PRE? No	3.4	0.000	0.000	0.0
PKG PLANI: n/a 21w00260*BD OUTFALL: 006 EXPIR. DATE: 10/23/92 STATUS: Active	Toledo Collins Park WTP PO Box 786 York St @ Collins Park Ave Lucas County, Toledo OLD NAME(S):	WIRSHED NO: 014 SUB-BASIN: Maumee Bay STREAM: Otter Creek VERIFIED? Yes WASTE: WIP Backwash	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 3.4	0.000	0.000	0.0
PKG PLANT: D/8 2IW00260*BD OUTFALL: 007 EXPIR. DATE: 10/23/92 STATUS: Active	PO Box 786 York St a Collins Park Ave Lucas County, Toledo OLD NAME(S):	WIRSHED NO: 014 SUB-BASIN: Maumee Bay STREAM: Otter Creek VERIFIED? Yes WASTE: WTP Backwash	BASIN: MAUREE BAY *RAP? Yes *PRE? No	K.M.: 3.4	0.000	0.000	0.0
PKG PLANT: n/a 2IW00260*BD OUTFALL: 008 EXPIR. DATE: 10/23/92 STATUS: Active	Toledo Collins Park WTP PO Box 786 York St @ Collins Park Ave Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 014 SUB-BASIN: Maumee Bay STREAM: Otter Creek VERIFIED? Yes WASTE: WTP Backwash	BASIN: Maumee Bay *RAP? Yes *PRE? No	R.M.: 3.4	0.000	0.000	0.0

NPDES & PACKAGE PLANT NO. AND PERMIT STATUS	FACILITY NAME AND ADDRESS LOCATION, COUNTY, AND CITY	RECEIVING BASIN, SUB-BASIN, WA	STREAM(S) TERSHED 8, & RAP STAT	RIVER US MILE	CAPACITY	FLOW NOW	ANNUAL FLOW MG/Year
PKG PLANT: n/a 21W00260*BD OUTFALL: 009 EXPIR. DATE: 10/23/92 STATUS: Active	Toledo Collins Park WTP PO Box 786 York St @ Collins Park Ave Lucas County, Toledo OLD NAME(S): Toledo Collins Park WTP	WTRSHED NO: 014 SUB-BASIN: Maumee Bay STREAM: Otter Creek VERIFIED? Yes WASTE: WTP Backwash				0.000	0.0
PKG PLANT: n/a 21W00260*CB OUTFALL: 001 EXPIR. DATE: 10/23/92 STATUS: Active	Toledo Collins Park WTP PO Box 786 York St @ Collins Park Ave Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 014 SUB-BASIN: Maumee Bay STREAM: Otter Creek VERIFIED? Yes WASTE: Backwash supernat	BASIN: Maumee Bay *RAP? Yes *PRE? No ant	R.M.: 3.4	10.500	10.500	319.6
PKG PLANT: n/a 2IB00002*CD OUTFALL: EXPIR. DATE: 01/09/92 STATUS: Active	Toledo Edison 300 Madison Ave 300 Madison Ave Lucas County, Toledo OLD NAME(S):	WTRSHED NO: 015 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE:	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 4.0	0.000	0.000	0.0
PKG PLANT: n/a 2IB00001*CD OUTFALL: EXPIR. DATE: 08/09/87 STATUS: Expired	Toledo Collins Park WTP PO Box 786 York St @ Collins Park Ave Lucas County, Toledo OLD NAME(S): Toledo Edison 300 Madison Ave 300 Madison Ave Lucas County, Toledo OLD NAME(S): Toledo Edison - ACME Station 300 Madison Ave Lucas County, Toledo OLD NAME(S): Toledo Edison Bayshore Plant	WTRSHED NO: 015 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: Cooling wtr, Ash	BASIN: Maumee *RAP? Yes *PRE? No ponds	R.M.: 4.0	406.000	406.000	12357.6
PKG PLANT: L-100 2IB00000*JD OUTFALL: 604 EXPIR. DATE: 09/15/90 STATUS: Active	Toledo Edison Bayshore Plant 300 Madison Ave. 4701 Bayshore Road (E. of Channel St.) Lucas County, Oregon Twp. OLD NAME(S): Toledo House of Correction 1 Government Center, Ste. 1710 7846 Schadel Road, 43571 Lucas County, Waterville Twp. OLD NAME(S): Union 76 Truck Step and Postgurgat	WTRSHED NO: 028 SUB-BASIN: STREAM: Driftmeyer Ditch VERIFIED? Yes WASTE: Sewage & cooling	BASIN: Lake Erie *RAP? Yes *PRE? No water	R.M.: 0.0	0.015	0.015	0.5
PKG PLANT: L-98 2PB00066*AD OUTFALL: EXPIR. DATE: 07/13/93 STATUS: Active	Toledo House of Correction 1 Government Center, Ste. 1710 7846 Schadel Road, 43571 Lucas County, Waterville Twp. OLD NAME(S):	WTRSHED NO: 040 SUB-BASIN: Swan Creek STREAM: Blue Creek VERIFIED? Yes WASTE: Sewage	BASIN: Maumee River *RAP? Yes *PRE? No	R.M.; 0.0	0.040	0.040	1.2
PKG PLANT: W-39 R 724 *AD OUTFALL: EXPIR. DATE: / / STATUS: To be sewered	Union 76 Truck Stop and Restaurant 16000 9-Mi. Rd I-280 & Tpk. (@ Libbey Rd) Wood County, Lake Twp. OLD NAME(S):	WTRSHED NO: 033 SUB-BASIN: Crane STREAM: Crane Creek VERIFIED? Yes WASTE:	BASIN: Lake Erie *RAP? Yes *PRE? No	R.M.: 0.0	0.030	0.030	0.9
PKG PLANT: n/a 2IV00080*8D OUTFALL: EXPIR. DATE: 01/22/89 STATUS: Active	Union 76 Truck Stop and Restaurant 16000 9-Mi. Rd I-280 & Tpk. (a Libbey Rd) Wood County, Lake Twp. OLD NAME(S): Waterville WTP 16 N 2nd St Waterworks Dr. Lucas County, Waterville OLD NAME(S): Woodeide Terrace Trailer Park	WTRSHED NO: 043 SUB-BASIN: Maumee River STREAM: Maumee River VERIFIED? Yes WASTE: WTP Backwash Wate	BASIN: Maumee *RAP? Yes *PRE? No r	R.M.: 21.1	0.026	0.026	0.8
PKG PLANT: L-60 2PS00002*BD OUTFALL: 001 EXPIR. DATE: 05/12/85 STATUS: Expired	Woodside Terrace Trailer Park 5025 Brinthaven 7717 Angola Rd Lucas County, Springfield Twp. OLD NAME(S):	WTRSHED NO: 009 SUB-BASIN: Swan Creek STREAM: Wolf Creek VERIFIED? Yes WASTE: Sewage	BASIN: Maumee *RAP? Yes *PRE? No	R.M.: 0.0	0.080	0.080	2.4
*** Total ***					596.983	576.369	17543.2

APPENDIX D

Package Sewage Treatment Plants in the RAP Area

APPENDIX D PACKAGE SEWAGE TREATMENT PLANTS IN THE RAP AREA

SOURCE: TMACOG Package plant database, compiled from OEPA NWDO, County Health Departments, & field investigations

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STREAM(S) AND WATERSHED BASIN		CAPACITY gpd	gpd	ANNUAL FLO MG/Yeau
* County Totals for Lucas	· ·					
	salem Anchor Point Marina (AKA Condo Marine Properties) off Corduroy Rd. Lucas County, Jerusalem Twp.	CHD_DACTN.		10000	10000	3.
PLANT: L-2	Butch and Denny's Bait and Sporting Goods Corduroy Rd.	WTRSHED NO: 031	BASIN: Lake Erie		1500	0.
NEALER 1.7	Cooley Canal Yacht Club Ropo Pd - South Side North of SP 2	18TROBER 10. 071		4000	4000	1.
PLANT: L-4	Country Inn 10711 Jerusalem Road Lucas County, Jerusalem Twp.	WTRSHED NO: 031 SUB-BASIN:	BASIN: Lake Erie	2000	2000	0.
PLANT: L-5	Eisenhower Jr. High School 331 N. Curtice Lucas County, Jerusalem Twp.	WTRSHED NO: 029			20000	7.
PLANT: L-6	Flying Bridge Restaurant Anchor Point, N. side Corduroy Rd., E. of Teachout	WTRSHED NO: 031 SUB-BASIN:	BASIN: Lake Erie	6000	6000	2.
PLANT: L-7	Gulish Villa 7802 Jerusalem Road	WTRSHED NO: 031			7000	2.
PLANT: L-8	Jack's Cardinal Supermarket SE Cor. Howard Rd. & Rachel Rd. Lucas County, Jerusalem Twp.	WTRSHED NO: 031 SUB-BASIN:			1000	0.
DEANT. L.O	Lakemont Landing N. end Coolie Rd., Reno Plat 4, lot 1581 Lucas County, Jerusalem Twp.	STREATS NO. 071	BASIN: Lake Erie	6000	6000	1.
PLANT: L-10 BUILT: 1967 (expansion)	Our Lady of Mt. Carmel E. Side of Elliston Rd., N. of Veler Rd. Lucas County, Jerusalem Twp. Professional Mechanical Service	WTRSHED NO: 032 SUB-BASIN: Cedar STREAM: Cedar Creek	BASIN: Lake Erie	4000	4000	1.
	Professional Mechanical Service 406 N. Howard Rd. Lucas County, Jerusalem Twp.	SUR-RASIN+	BASIN: Lake Erie	1500	1500	0.
PLANT: L-12	Wolf Creek Sportsman's Association 349 Teachout Rd.	WTRSHED NO: 031 SUB-BASIN:	BASIN: Lake Erie	2000	2000	0.

* Subsubtotal *

^{22.6}

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STR AND WATERSHED	EAM(S) BASIN	CAPACITY gpd	FLOW NOW gpd	ANNUAL FLOW MG/Year
* Township Totals for Monc PLANT: L-14 BUILT: 1967	Chateau Estates 10430 Airport Hwy	WTRSHED NO: 009 SUB-BASIN: Swan Creek STREAM: Wolf Creek	BASIN: Maumee River	36000	36000	13.1
PLANT: L-15 BUILT: 1961	Highway Patrol Post	WTRSHED NO: 009 SUB-BASIN: Swan Creek STREAM: Swan Creek		1500	1500	0.5
PLANT: L-16 BUILT: 1973	Monclova School (New) Monclova Road & Waterville-Monclova Rd Lucas County, Monclova Twp.	WTRSHED NO: 009 SUB-BASIN: Swan Creek STREAM: Swan Creek	BASIN: Maumee River	5000	5000	1.8
PLANT: L-17	Monclova School (Old)	WTRSHED NO: 041	BASIN: Maumee River	8500	8500	3.1
* Subsubtotal *		·····	*********	51000	51000	18.6
* Township Totals for Orego PLANT: L-113 BUILT: 1988	on Bay Village Condominiums N side Bayshore Rd 1000' W of Stadium Lucas County, Oregon Twp.	WTRSHED NO: SUB-BASIN: STREAM: Lake Erie	BASIN:	200000	200000	73.0
PLANT: L-19	Buckeye Pipeline	WTRSHED NO: 028	BASIN: Maumee Bay	1500	1500	0.5
PLANT: L-20 T213*80	Chessie System Presque Isle Dock, near Otter Creek & Bayshore Rds Lucas County, Oregon Twp.	WTRSHED NO: 028 SUB-BASIN:	BASIN: Maumee Bay	2500	2500	0.9
PLANT: L-99	Clay School Complex 5633 Seaman Rd., a NW_cor. of Seaman & Stadium Rd	WTRSHED NO: 028 SUB-BASIN:	BASIN: Lake Erie	30000	30000	11.0
PLANT: L-21	G.A.F. Society Banquet Hall 3624 Seaman Rd. Lucas County, Oregon Twp.	WTRSHED NO: 028 SUB-BASIN:	BASIN: Lake Erie		3000	1.1
PLANT: L-22 BUILT:	Globe Industries, Inc. 645 N. Lallendorf St. Lucas County, Oregon Twp. Lakefront Dock & Terminal Co.	WTRSHED NO: 028 SUB-BASIN: STREAM: Lake Erie	BASIN: Lake Erie	6000	6000	2.2
PLANT: L-23 BUILT: 1964	Otter Creek & Bayshore Rds	SUB-BASIN:		3000	3000	1.1
	Lakeside Trailer Park 5404 Bayshore	WTRSHED NO: 028 SUB-BASIN:	BASIN: Lake Erie	2000	2000	0.7
PLANT: L-25 21N00069	Liquid Carbonic Corp. 3742 Cedar Point Rd. Lucas County, Oregon Twp.	WTRSHED NO: 028 SUB-BASIN:	BASIN: Lake Erie	1500	1500	0.5

In the RAP Area

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STRE	AM(S) BASIN	CAPACITY gpd	FLOW NOW AI gpd	NNUAL FLOW MG/Year
PLANT: L-26 BUILT: 1981	Lucas County Residential Center 133/157 Wynn Rd. (NW cor. Wynn & Seaman) Lucas County, Oregon Twp.	WTRSHED NO: 028 SUB-BASIN: STREAM: Lake Erie	BASIN: Lake Erie	2000	2000	0.7
PLANT: L-27 BUILT: 1973	National Wire of Ohio, Inc. 832 N. Lallendorf Rd. at York St. Lucas County, Oregon Twp.	WTRSHED NO: 028 SUB-BASIN: STREAM: Amlosch Ditch	BASIN: Lake Erie	3500	3500	1.3
PLANT: L-28	Oregon Municipal Building 5330 Seaman	WTRSHED NO: 028	BASIN: Lake Erie	5000	5000	1.8
PLANT: L-29 MI 49267 BUILT:	Shuer, Jay J., School 4955 Seaman Rd. Lucas County, Oregon Twp.	WTRSHED NO: 028 SUB-BASIN: STREAM: Johlin Ditch ->	BASIN: Maumee Bay tile field	3000	3000	1.1
PLANT: L-30 BUILT: 1958, 1974	Standard Oil Asphalt Plant Cedar Point Rd. at Otter Creek Rd. Lucas County, Oregon Twp.	WTRSHED NO: 028 SUB-BASIN: STREAM: Otter Creek	BASIN: Maumee Bay	21500	21500	7.9
PLANT: L-100 21B00000*ID BUILT:	Toledo Edison Bayshore Plant 4701 Bayshore Road (E. of Channel St.) Lucas County, Oregon Twp.	WTRSHED NO: 028 SUB-BASIN: STREAM: Driftmeyer Ditch	BASIN: Lake Erie	15000	15000	5.5
PLANT: L-31 BUILT:	Vargo Carry Out	WTRSHED NO: 028 SUB-BASIN: STREAM: Lake Erie	BASIN: Lake Erie	2500	2500	0.9
PLANT: L-101 BUILT:	Wynn Elementary School 5633 Bay Shore Rd Lucas County, Oregon Twp.	WTRSHED NO: 028 SUB-BASIN: STREAM: Lake Erie	BASIN: Lake Erie	0	0	0.0
Subsubtotal *			************	302000	302000	110.3
Township Totals for Prov PLANT: L-33 BUILT: 1970	idence Peaceful Acres Trailer Park 13555 Waterville-Neapolis Rd. Lucas County, Providence Twp.	WTRSHED NO: 038 SUB-BASIN: Swan Creek STREAM: Blue Creek	BASIN: Maumee River	12500	12500	4.6
Subsubtotal *				12500	12500	4.6
Township Totals for Rich PLANT: L-35 BUILT:	field Corbett Gentry (Private Residence) 3917 Richfield Center Rd. Lucas County, Richfield Twp.	WTRSHED NO: 001 SUB-BASIN: STREAM:	BASIN:	1500	1500	0.5
PLANT: L-36	Richfield Center Market 3902 Washburn Lucas County, Richfield Twp.	WTRSHED NO: 001	BASIN:	1000	1000	0.4
Subsubtotal *		······································		2500	2500	0.9
Township Totals for Spen PLANT: L-37 2PH00014*CD BUILT: 1970	cer Oak Terrace 329 Oak Terrace Blvd. (off Angola at Irwin) Lucas County, Spencer Twp.	WTRSHED NO: 009 SUB-BASIN: Swan/Wolf Cr STREAM: Butler Ditch->Dr	BASIN: Maumee River ennan Dt, Wolf Cr.	100000	100000	36.5

JU NO.

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STREA AND WATERSHED B	M(S) ASIN	CAPACITY gpd	FLOW NOW gpd	ANNUAL FLOW MG/Year
PLANT: L-38 BUILT: 1963	Spencer-Sharples School Unknown Lucas County, Spencer Twp.	WTRSHED NO: 001 SUB-BASIN: Swan/Wolf Cr STREAM: Butler Ditch->Dre	BASIN: Maumee River	15000	0	0.0
* Subsubtotal *		************************		445000	100000	74 6
* Township Totals for Sprin PLANT: L-39 BUILT: 1960, 1974	ngfield Bancroft Trailer Park 6951 Bancroft, Toledo OH 43615 (bet. McCord & King Lucas County, Springfield Twp. Burroughs Corporation	WTRSHED NO: 004 SUB-BASIN: Swan Creek STREAM: Haefner Ditch	BASIN: Maumee River		6000	36.5 2.2
PLANT: L-40 BUILT: 1969	7300 Airport Highway (U of Holloway Pd)	WTRSHED NO: 009 SUB-BASIN: Swan Creek STREAM: Wolf Creek	BASIN: Maumee River	4000	4000	1.5
PLANT: L-41 BUILT: 1967	Crissey Elementary School #1 Geiser Road (NW corner Crissey & Geiser Roads)	WTRSHED NO: 001 SUB-BASIN: Swan Creek	BASIN: Maumee River	6000	6000	1.6
PLANT: L-42	Dorr St. Elementary School	WTRSHED NO: 004	BASIN: Maumee River	13000	13000	4.7
PLANT: L-43 BUILT: 1988	Elizabeth Scott Nursing Home	WTRSHED NO: SUB-BASIN:	BASIN:	15500	11000	4.0
PLANT: L-45 BUILT: 1984, 1958	Glengary Country Club SE cor Hill & Crissey	WTRSHED NO: 009 SUB-BASIN: Swan Creek STREAM: Drennan Dt. (effl	BASIN: Maumee River		9000	3.3
PLANT: L-46	Hidden Lake 7777 W. Bancroft Lucas County Springfield Twp	WTRSHED NO: 004 SUB-BASIN: Ottawa River STREAM: Zink Ditch			7200	2.6
PLANT: L-47 BUILT: 1968	Holland Amoco (Station #00648) Airport Highway (SR 2) at I-475, SW corner Lucas County, Springfield Twp.	WTRSHED NO: 009 SUB-BASIN: Swan Creek STREAM: Wolf Creek	BASIN: Maumee River	2000	2000	0.7
PLANT: L-48 BUILT: 1962	Holland Shopping Center 6835 Angola Rd. a SW cor. Clarion & Angola. Lucas County. Springfield Twp.	WTRSHED NO: 009 SUB-BASIN: Swan Creek STREAM: Drennan Ditch	BASIN: Maumee River	5000	5000	1.8
PLANT: L-49 H 704 *AD BUILT: 1971 or before	6520 Burnham Green	WTRSHED NO: 004 SUB-BASIN: Swan Creek STREAM: Potter Ditch -> 2	BASIN: Maumee River ink/Heldman Ditch	168000	160000	58.4
PLANT: L-50 BUILT: 1972	9831 Garden Road, 2000 ft E. of Eber Rd.	WTRSHED NO: 041 SUB-BASIN: Swan Creek STREAM: Cunningham Ditch	BASIN: Maumee River	8000	8000	2.9
	7438 Airport Highway	SUR-RASIN. Sugar Creak		8000	8000	2.9
PLANT: L-52 BUILT: 1970	Oak Grove Mobile Court 1839 McCord Rd, N. of NW cor. of intersection w/ D Lucas County, Springfield Twp.	WTRSHED NO: 004 SUB-BASIN: Ottawa River STREAM: Haeffner Ditch	BASIN: Maumee River	8500	8500	3.1

In the RAP Are.

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STREAM(S) AND WATERSHED BASIN	CAPACITY	FLOW NOW gpd	ANNUAL FLOW MG/Year
PLANT: L-53 2PH00013*CD BUILT: 1970	Oak Openings Industrial Park 1771 S. Eber Road @ Geiser Road	WTRSHED NO: 009 BASIN: Maumee Rive SUB-BASIN: Swan Creek STREAM: Kujowski Ditch	- 180000	110000	40.2
DI ANT - 1 - 100	Ohio National Guard Near Toledo Express Airport	HIDCHED NO. 0/2 DACINA MOLMON DAVA	- 28500	28500	10.4
PLANT: L-54 BUILT: 1970	Royal Vilage Mobile Home Park 7519 Dorr St. (betw. Dorr & Nebraska)	WTRSHED NO: 004 BASIN: Maumee Rive SUB-BASIN: Ottawa River STREAM: Heldman/Zink Ditch	r 40000	40000	14.6
	Springfield Saloon 904 Clark St. at Angola Road Lucas County, Springfield Twp.			6000	2.2
PLANT: L-58 BUILT: 1971	Stairs Apts.	WTRSHED NO: 011 BASIN: Maumee Rive SUB-BASIN: Swan Creek STREAM: Good Ditch	r 18000	18000	6.6
	Sun Oil Company 6405 Airport Highway (at 1-475) Lucas County, Springfield Twp.			1500	0.5
PLANT: L-44 BUILT: 1971	Twin Hills Apts. (form. 4S+2) 6653 Dorcas a SW cor. of Dorcas & Hill Lucas County, Springfield Twp.	WTRSHED NO: 004 BASIN: Maumee Rive SUB-BASIN: Swan Creek STREAM: Potter Ditch -> Zink Ditch	r 2000	2000	0.7
PLANT: L-59	Villa West 10005 Garden Road Lucas County, Springfield Twp.	WTRSHED NO: 041 BASIN: Maumee Rive	r 15000	15000	5.5
PLANT: L-60 \$702*BD BUILT: 1969	Woodside Terrace Trailer Park 7717 Angola Rd Lucas County, Springfield Twp.	WTRSHED NO: 009 BASIN: Maumee Rive SUB-BASIN: Swan Creek STREAM: Wolf Creek via tributary from north	r 80000	80000	29.2
Subsubtotal *			631200	548700	199.9
^r Township Totals for Swan PLANT: L-61 BUILT: 1979	ton Arrowhead Trailer Park 5402 Jerome Road, W. side SR 295, S. of Turnpike Lucas County, Swanton Twp.	WTRSHED NO: 007 BASIN: Maumee Rive SUB-BASIN: Swan Creek STREAM: Wiregrass Ditch		35500	13.0
PLANT: L-62 2PP00003*CD BUILT: 1961 or earlier	Oak Openings - Fallen Timbers Service Plaza Turnpike near Shaffer Road Lucas County, Swanton Twp.	WTRSHED NO: 007 BASIN: Maumee Rive SUB-BASIN: Swan/Wolf Cr STREAM: Murback Ditch->Prairie Ditch->A1 Cr	r 150000	110000	40.2
PLANI: L-03	Airport Highway	WIRSHED NU: UU/ BASIN: Maumee Rive	r 2000	2000	0.7
PLANT: L-64	Swanton School	WTRSHED NO: 039 BASIN: Maumee Rive SUB-BASIN: Swan Creek	r 6000	6000	1.6

1967 - 1977 - 1977 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -

_je Nc.___j-5

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STREAM(S) AND WATERSHED BASIN	CAPACITY	FLOW NOW	ANNUAL FLO MG/Yea
PLANT: L-65 BUILT: 1963	Valleywood Golf Club 13501 Airport Hwy. @ NW cor Scott & SR 2 Lucas County, Swanton Twp.	WTRSHED NO: 007 BASIN: Maumee SUB-BASIN: Swan Creek STREAM: Aî Creek	River 12500	12500	4.
Subsubtotal *			206000		60.
Township Totals for Sylv PLANT: L-67 BUILT: 1969	Arbor Hills Jr. High (Sylvania Middle School) 5334 Whiteford Rd @ SE cor. Whiteford & McGregor Lucas County, Sylvania Two.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via tributary		18000	6.
PLANT: L-68 G 702 *AD BUILT: 1972 or earlier	Bentbrook Farms 5447 Sturbridge Road Lucas County, Sylvania Twp.	WTRSHED NO: 004 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek		120000	43.
PLANT: L-69 BUILT: 1971, 1974	Briarfield Rest Home 5757 Whiteford Road (N of Alexis) Lucas County, Sylvania Twp. Centennial Manor	STREAM: Tenmile Creek WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer	River 15000	15000	5.
PLANT: L-71 Y700*CD BUILT: 1980 (expansion)	Centennial Manor 3230 Centennial Road Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer	River 30000	30000	11.
PLANT: L-72 BUILT: 1959	Central Avenue Elementary School 7460 W. Central Ave. at NE cor. Centennial Rd. Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek	River 1250(12500	4.
PLANT: L-73 BUILT: 1963	Central Mobile Village Trailer Park 7924 W Central Ave. (E. of Centennial Rd) Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek	River 12500) 12500	4.
PLANT: L-76	Courts of Sylvania	WTRSHED NO: 003 BASIN: Maumee	River 2000	2000	0.
PLANT: L-77	Design for Living 7640 H. Renaroft St	WTRSHED NO: 004 BASIN: Maumee) 1000	0.
	Franklin Park Cinemas) 12000	4.
PLANT: L-79 BUILT: 1971	Garden Court South Apartments 5522 Alexis Rd @ SW cor. of Alexis & Rudyard Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer	River 3000	3000	1.
PLANT: L-80	General Telephone 3126 McCord Road at Central Ave. Lucas County, Sylvania Twp.	VTRSHED NO: 202 BASIN: Maumee	River 1500) 1500	0.
	Golden Garden Tavern & Restaurant 8256 W. Central Ave. Lucas County, Sylvania Twp.		River 8000) 8000	2.
	Home Cafe 5102 W. Alexis Rd (at Whiteford Rd.) Lucas County, Sylvania Twp.			3500	1.

In the RAP Area

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STREAM(S) AND WATERSHED BASIN	CAPACITY gpd	FLOW NOW gpd	ANNUAL FLOW MG/Year
PLANT: L-85 BUILT: 1970	Oak Tree (Shopping Center) 4024 N. Holland-Sylvania Rd. Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer	River 8500	8500	3.1
PLANT: L-86 2IS00008*ED BUILT: 1964	Reichert Stamping 8200 W. Central Ave. Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer	River 8000	8000	2.9
PLANT: L-87 21000002 BUILT: 1970	Robintech 3610 Centennial Road Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer	River 1500	1500	0.5
ALANT. 1 00	Second Honeymoon (Motel) 8613 W. Central Ave. Lucas County, Sylvania Twp.		River 7000	7000	2.6
PLANT: L-82 BUILT: 1966	Shed, The 5365 Monroe St (at Sadalia Road) Lucas County, Sylvania Twp. Swiss Aire Chalet Condominiums, Middle plant	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via Monroe St. st	River 2500 orm	2500	0.9
PLANT: L-90-B BUILT: 1969 (Phase I)	Swiss Aire Chalet Condominiums, Middle plant 4555 to 4615 Holland-Sylvania Rd., Toledo Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer	River 6000	6000	2.2
PLANT: L-90-A	Swiss Aire Chalet Condominiums, North Plant 4555 to 4615 Holland-Sylvania Rd., Toledo	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River	River 12000	12000	4.4
PLANT: L-90-C BUILT: 1967 (Phase II)	Lucas County, Sylvania Twp. Swiss Aire Chalet Condominiums, South Plant 4555 to 4615 Holland-Sylvania Rd., Toledo Lucas County, Sylvania Twp. Toledo Concrete Pipe Company	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer	River 6000	6000	2.2
PLANT: L-92 BUILT: 1977 (filters)	Toledo Concrete Pipe Company 3756 Centennial Road, (S. of Sylvania Ave.) Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer	River 1500	1500	0.5
PLANT: L-70 BUILT: 1973, 1981	Ventura's Restaurant 7742 W. Bancroft, (west of Hesyler) Lucas County, Sylvania Twp.	WTRSHED NO: 004 BASIN: SUB-BASIN: STREAM: Haeffer Ditch via	7000	7000	2.6
PLANT: L-94 BUILT:	Wayside General Store 7702 W. Bancroft Lucas County, Sylvania Twp.	WTRSHED NO: 004 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Zink Ditch	River 1000	1000	0.4
PLANT: L-95 BUILT: 1966	Whiteford Elementary School 4708 Whiteford Rd Lucas County, Sylvania Twp.	WTRSHED NO: 003 BASIN: Maumee SUB-BASIN: Ottawa River STREAM: Tenmile Creek via storm sewer		10000	3.7
* Subsubtotal *	********		250000	310000	113.2
* Township Totals for Tolec PLANT: L-111 BUILT: 1960s	do Dial Corp. 6120 N. Detroit Ave Lucas County, Toledo Twp.	WTRSHED NO: 023 BASIN: Maumee SUB-BASIN: STREAM: Silver Creek		0	0.0
PLANT: L-109 BUILT: 1982	McDonald's SW cor Alexis & Hagman Lucas County, Toledo Twp.	WTRSHED NO: 023 BASIN: Maumee	7000	7000	2.6

_ge Nc____)

. 77

ł

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STREA		CAPACITY gpd		ANNUAL FLOW MG/Year
PLANT: L-104 BUILT: 1960	Mill Mfg. Co. 4511 South St. Lucas County, Toledo Twp.	WTRSHED NO: 004 SUB-BASIN: Ottawa River STREAM: Ottawa River via	BASIN: Maumee River	1500	1500	0.5
PLANT: L-112	Netterfield's Fish & Chips N side Monroe just E of Laskey	WTRSHED NO: 004 SUB-BASIN: Ottawa River	BASIN: Maumee	6000	0	0.0
BUILT: 1970 PLANT: L-107	Lucas County, Toledo Twp. Pee-Wee Inn	STREAM: Tifft Ditch? WTRSHED NO: 023	BASIN: Maumee	6000	0	0.0
BUILT: 1980	Hagman 0.25 mi.N of Alexis Lucas County, Toledo Twp.	SUB-BASIN: STREAM: Silver Creek				
PLANT: L-110 BUILT: 1960s	Penney, J.C., Warehouse Benore Rd Lucas County, Toledo Twp.	WTRSHED NO: 023 SUB-BASIN: STREAM: Silver Creek	BASIN: Maumee	0	Ð	0.0
PLANT: L-108 BUILT: 1981	Speedway Truck Stop NE cor Alexis & Hagman Lucas County, Toledo Twp.	WTRSHED NO: 023 SUB-BASIN: STREAM: Silver Creek	BASIN: Maumee	1500	1500	0.5
PLANT: L-106	Standard Oil NW cor Alexis & Hagman	WTRSHED NO: 023 SUB-BASIN:	BASIN: Maumee	1500	1500	0.5
BUILT: 1975	Lucas County, Toledo Twp.	STREAM: Silver Creek	******			

in the second		and the second se				the RAP Area	
PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED		RECEIVING STR AND WATERSHED	BAŠIŇ	gpd	FLOW NOW gpd	ANNUAL FLOW MG/Year	
PLANT: L-105 BUILT: 1969	State Line Builders Supply NW cor State Line & Ann Arbor RR Lucas County, Toledo TWp.	WTRSHED NO: 025 SUB-BASIN: STREAM: Halfway Creek	BASIN: Maumee	2500	2500	0.9	
Subsubtotal *				26000	14000	5.1	
Township Totals for Wash PLANT: L-96 2PH00000*BD BUILT: 1972 or earlier	ington Fuller's Creekside Estates 6064 Villamar Lucas County, Washington Twp.	WTRSHED NO: 021 SUB-BASIN: Portage STREAM: Halfway Creek	BASIN: Maumee Bay	100000	270000	98.6	
Subsubtotal *				100000	270000	98.6	
Township Totals for Wate PLANT: L-97 BUILT: 1975 (additions)	rville Sisters of Notre Dame (AKA Lial Convent) 5900 Davis Road, bet. Obee & Weckerly Rds. Lucas County, Waterville Twp.	WTRSHED NO: 039 SUB-BASIN: Swan Creek STREAM: Swan Creek via	BASIN: Maumee River Lake Lial	17500	17500	6.4	
DI ANT + 1 - 08	Toledo House of Correction (aka Welfare Farm) 1 Government Center, Ste. 1710 Lucas County, Waterville Twp.	UTPSHED NO- 040	BASIN: Maumee River	40000	40000	14.6	
Subsubtotal *			*********		E WE 0.0		
* Subtotal **				57500	57500		
* County Totals for Ottaw	a			1818700	1899200	691.5	
Township Totals for Aller PLANT: 0-2 BUILT: 1958	n Allen Park Mobile Court Reservation Line Road Ottawa County, Allen Twp.	WTRSHED NO: 032 SUB-BASIN: Cedar Creek STREAM: Cedar Creek	BASIN: Lake Erie	5000	11700	4.3	
PLANT: 0-5 OH 0003425 BUILT: 1967	Guardian Industries NW cor Martin-Moline Rd. at SR 51 Ottawa County, Allen Twp.	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Little Crane Cr		2000	2750	1.0	
PLANT: 0-4 BUILT: 1972, 1983	Luther Home of Mercy Corner of Williston and Main St. Ottawa County, Allen Twp.	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Crane Creek	BASIN: Lake Erie	32500	32500	11.9	
Subsubtotal *			*******		((050	17.1	
Township Totals for Bent PLANT: 0-7 BUILT: 1975	on Wayside Inn NE cor SR 579 at SR 2 (& Graytown Rd) Ottawa County, Benton Twp.	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Crane Creek via	BASIN: Lake Erie	39500 3500	46950 3500	1.3	
Subsubtotal *							
* Subtotal **				3500	3500	1.3	
				43000	50450	18.4	** County Tota

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	EAM(S) BASIN HILLEE	CAPACITY gpd	FLOW NOW gpd	ANNUAL FLOM MG/Year	
Township Totals for Lake PLANT: W-94 BUILT: 1986	795 Fuel Stop (Total Oil & Arxon Motel) I-280 @ SR 795 3510 Moline-Martin Rd Wood County, Lake Twp.	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Henry Creek	BASIN: Lake Erie	12000	12000	4.4
PLANT: W-16 BUILT:	Ambassador Motor Lodge NE Corner of Rt. 280 and Hanley Rd.	WTRSHED NO: 033 SUB-BASIN: Crane Creek	BASIN: Lake Erie	7500	7500	2.3
PLANT: W-17	Berman's Supper Club/Christmas Shop 5104 Walbridge Rd.	WTRSHED NO: 032 SUB-BASIN: Cedar	BASIN: Lake Erie		12000	4.4
PLANT: W-19 R 725 *AD BUILT:	Charter House Inn I-280 @ Hanley Rd. Wood County, Lake Twp.	WTRSHED NO: 033 SUB-BASIN: Crane STREAM: Crane Creek			30000	11.0
DEANT. U.Q.	Fairlane Motel	UTOCUCH NA. A77	BASIN: Lake Erie	2500	2500	0.9
PLANT: W-22 BUILT:	Gastown Service Station and Restaurant	WTRSHED NO: 033	BASIN: Lake Erie	8000	8000	2.9
	Great Lakes Diesel Co 1-280 a Libbey Rd 900 ft E. of 1-280		BASIN: Lake Erie		1500	0.9
PLANT: W-24 BUILT: 1958	Greenbrier Motel & Real Deal Fuel Stop I-280 @ Latcha Rd Wood County, Lake Twp.	WTRSHED NO: 033 SUB-BASIN: Crane STREAM: Crane Creek	BASIN: Lake Erie	- 4100	4100	1.!
PLANT: W-27	Lusher Trailer Court E. Broadway @ Walbridge Rd. Wood County, Lake Twp.	WTRSHED NO: 032 SUB-BASIN: Cedar Creek	BASIN: Lake Erie	2000	2000	0.
PLANT: W-29 BUILT: 1973, 1984	McDonald's I-280 a 3486 Libbey Rd Wood County, Lake Twp.	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Crane Creek	BASIN: Lake Erie	20000	20000	7.:
PLANT: W-28 BUILT: 1967	Airport Dd /N of NU con SP 705 8 1-2801	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Ayres Creek			1500	0.
PLANT: W-33 BUILT: 1982	Rudolph/Libbe Inc. 6494 Latcha Road Wood County, Lake Twp.	WTRSHED NO: 032	BASIN: Lake Erie	1500	1500	0.
PLANT: W-91 BUILT: 1960	Schio I-280 a SR 795 Vood County Jake Two	WTRSHED NO: 033 SUB-BASIN: Crane Creek	BASIN: Lake Erie	1500	0	0.
PLANT: W-35 BUILT:		WTRSHED NO: 033	BASIN: Lake Erie		21500	7.

In the RAP Area

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STRI AND WATERSHED	EAM(S) BASIN ====================================	CAPACITY gpd	FLOW NOW gpd	ANNUAL FLOW MG/Year
PLANT: W-36 BUILT: 1966	Total Oil Station SR 795 @ I-280, 3510 Martin-Moline Rd Wood County, Lake Twp.	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Ayres Creek	BASIN: Lake Erie	1500	1500	0.5
	Truckstops of America I-280 a Libbey Road Wood County, Lake Twp.		BASIN: Lake Erie	40000	40000	14.6
PLANT: W-39	Union 76 Truck Stop and Restaurant 1-280 & Tpk. (@ Libbey Rd) Wood County, Lake Twp.	WTRSHED NO: US5	BASIN: Lake Erie	30000	30000	11.0
DIANT - U-40	Wagoner Apartments 6817 Fremont Pike: US 20, SE of Tracy Rd Wood County, Lake Twp.	UTPSHED NO+ 033	BASIN: Lake Erie storm sewer		5000	1.8
	and the second sec	·····		15000	15000	5.5
PLANT: W-87-S BUILT: 1965	Wood-Lake Trailer Park NE cor. of Cummings Road crossing under Tpk Wood County, Lake Twp. Wood-Lake Trailer Park NE cor. of Cummings Rd crossing under Tpk Wood County, Lake Twp.	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Henry Creek	BASIN: Lake Erie	9000	9000	3.3
* Subsubtotal *				226100	224600	82.0
* Township Totals for Middl PLANT: W-47 BUILT:	leton Southview Estates Mobile Home Park 12865 Five Point Road Wood County, Middleton Twp.	WTRSHED NO: 045 SUB-BASIN: Maumee River STREAM: Maumee River	BASIN: Maumee River	40000	: 40000	14.6
* Subsubtotal *			**************	40000	40000	14.6
* Township Totals for North PLANT: W-98 BUILT: 1957	nwood East Lane Mobile Manor SE cor Florence & Shomberg Sts. Wood County, Northwood Twp.	WTRSHED NO: 013 SUB-BASIN: Maumee River STREAM: Maumee River	BASIN: Maumee River	10000	10000	3.7
* Subsubtotal *				10000	10000	3.7
* Township Totals for Perry PLANT: W-100 BUILT:	ysburg Abbey Aetna 11140 Avenue Rd Wood County, Perrysburg Twp.	WTRSHED NO: SUB-BASIN: Maumee River STREAM: Grassy Creek?			3000	1.1
DI ANT. U-54	Bayer Trailer Park US 20, E. of Wood County, Perrysburg Twp.	UTDENED NO. 032	BASIN: Lake Erie		12500	4.6
PLANT: W-55-W	Divine Word Prepatory Seminary 26581 West River Road Wood County, Perrysburg Twp.	WTRSHED NO: 044	BASIN: Maumee River	10000	10000	3.7
PLANT: W-55-E	Divine Word Prepatory Seminary 26581 West River Road Wood County, Perrysburg Twp.	WTRSHED NO: 044		5000	5000	1.8

· . •

PACKAGE PLANT & NPDES NO. AND YEAR INSTALLED	PACKAGE PLANT NAME AND LOCATION	RECEIVING STRE AND WATERSHED	gpd	pap	ANNUAL FLOM MG/Year	
PLANT: W-56 BUILT:	Five Points Trailer Park 24370 Route 199 @ SE cor int Five Pts/Dunbrdg Rd Wood County, Perrysburg Twp.	WTRSHED NO: SUB-BASIN: STREAM:	BASIN:	7000	7000	2.0
PLANT: W-57 BUILT: 1974	Fort Meigs State Memorial Park Off SR 65 bet. Fort & parking lot Wood County, Perrysburg Twp.	WTRSHED NO: 079 SUB-BASIN: Maumee River STREAM: Maumee River	BASIN: Maumee River	5000	5000	1.8
PLANT: W-58	Henry Packing Company 9244 Fremont Pike (US 20) Wood County, Perrysburg Twp.	WTRSHED NO: 046	BASIN: Lake Erie mamed tributary	- 4000	4000	1.!
PLANT: W-59 BUILT: 1948	Lime City School US 20 & Lime City Road Wood County, Perrysburg Twp.	WTRSHED NO: 032 SUB-BASIN: Cedar Creek STREAM: Dry Creek via di	BASIN: Lake Erie tch	- 1840	: 0	0.0
PLANT: W-61 BUILT:	Perrysburg Estates MHP, SS #5 Lime City Rd, N of Reitz Rd. = 23720 Lime City Rd Wood County, Perrysburg Twp.	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Henry Ditch	BASIN: Lake Erie	- 25000	25000	9.1
PLANT: W-60 BUILT:	Perrysburg Township Police & Ambulance Building 26609 Lime City Road, N. of US 20 Wood County, Perrysburg Twp.	WTRSHED NO: 032 SUB-BASIN: Cedar Creek STREAM: Dry Creek via di	BASIN: Lake Erie tch	1500	1500	0.!
Subsubtotal *		*****		74840	73000	26.7
	Leisure Village Mobile Home Park N side Fremont Pike (US 20) @ Lemoyne Rd Wood County, Troy Twp.	WTRSHED NO: 033 SUB-BASIN: Crane Creek STREAM: Crane Creek	BASIN: Lake Erie	4000	4000	1.5
PLANT: W-78 BUILT: 1974	R & L Truck & Trailer Service 3423 Genoa Rd (Rt 163) Wood County, Troy Twp.	WTRSHED NO: 033 SUB-BASIN: Crane STREAM: Crane Creek	BASIN: Lake Erie	- 1500	1500	0.:
Subsubtotal *				5,500 mad	5,500 mad	
* Subtotal ** ** Total ***				356,440 mgd 2,218,140 mgd	353,100 mad	129. M 838.

er.

APPENDIX E

Publicly-Owned Treatment Works in the RAP Area

APPENDIX E PUBLICLY-OPERATED TREATMENT WORKS IN THE RAP AREA

SOURCE: TMACOG Arewide Water Quality Management $\ \mbox{Plan}^{21}$

POTH NAME	COUNTY	OPERATED BY	CAPACITY, MGD	PRESENT TREATMENT FACILITIES
=======================================	*******	=======================================		
** TOTAL FOR COUNTY Lucas				
Bentbrook Farms Subdiv.	Lucas	Lucas County	0.1	0.1 Extended aeration
Fuller's Creek Subdiv.	Lucas	Lucas County	0.1	0.3 Extended aeration
Lincoln Green Subdiv.	Lucas	Lucas County	0.2	0.2 Extended aeration
Maumee River WWTP	Lucas	Lucas County	15.0	9.0 Contact Stab/step feed,aer dig., belt filt
Oak Openings Ind Park	Lucas	Lucas County	0.2	0.0 Extended aeration
Oak Terrace	Lucas	Lucas County	0.1	0.1 Extended aeration, filt, CL2
Oregon South Shore Park	Lucas	Oregon	0.2	0.5 Contact Stabilization
Oregon WWTP	Lucas	Oregon	8.0	4.3 Activated Sludge, phos.
Toledo Bay View WWTP	Lucas	Toledo	102.0	91.2 Act Sludge, anaer dig., phos., belt filt press
Whitehouse WWTP	Lucas	Whitehouse	0.3	0.3 Extended aeration
** Subtotal **				
			126.1	105.9
** TOTAL FOR COUNTY Wood	44			A fitter del construction del construction fada
Haskins WWTP	Wood		0.1	0.1 Extended aeration, filters, drying beds
Perrysburg WWTP	Wood		2.8	3.0 Act Sidg, pre-aer, phos, anaer digest, vac dry beds
** Subtotal **				
			2.9	3.1
*** Total ***				
			129.0	109.0

APPENDIX F

Publicly-Owned Treatment Works Effluent Data

 β

AP DIX F POTW 1986 EFFLUENT DATA

SOURCE: Ohio EPA NPDES effluent data

LUCAS COUNTY

POTW NAME	OEPA PERMIT NO	NPDES PERMIT NO	AVG Flow Mgd	EFFLUENT BOD mg/l	EFFLUENT TSS mg/l	EFFLUENT NH3 mg/l	EFFLUENT NO2 mg/l	EFFLUENT NO3 mg/l	EFFLUENT TOTAL P mg/l	EFFLUENT CBOD mg/l	SLUDGE DRY Tons	SLUDGE VOLUME GALLONS	SLUDGE X TOTAL SOLIDS
FULLER'S CREEKSIDE ESTATE January, 1986 February March April May June July August September October November December	2₽₩00000*AÐ S	0H0053732	.279 .463 .454 .300 .299 .268 .116 .095 .135 .135 .216 .201 .371	10.0 13.3 12.5 7.0 9.5 87.7 22.3	12.53 120.25 15.50 15.50 11.50 11.50 11.7 11.7 11.7								
Annual Average Effluent Limits,	30-day Aver	age	.266	14.2 30.0	14.3 30.0								
MAUMEE RIVER WWTP January, 1986 February March April May June July August September October November December	2PK00000*DD	OHOO34223	7.653 12.264 13.749 9.853 7.178 9.450 6.893 6.657 7.152 10.268 7.478 9.557	8.3 9.7 16.3 15.2 5.5 7.5 7.5 7.5 10.5	15.4 19.6 25.1 22.6 12.5 12.9 8.4 11.7 13.8 14.7	.66 2.5 1.9 .5 .26 .3 .8 2.6	.1135.001.10.01	9.6	.9 .88 .89 .78 .88 .9 .78 .88 .8	6.8 7.840 10545680 3.4456 3.4456	115.2 81.6 121.5 94.9 91.4 264.5 98.8 90.1 80.9 112.6 94.1		15.6 14.8 16.9 17.6 17.8 20.5 20.3 18.4 29.3 17.6 19.7 15.5
Annual Average Effluent Limits,	30-day Aver	age	9.013	9.3 30.0	15.2 30.0	1.0	.1	10,6	.8 1.0	5.8	114.5		18.7
OREGON DUPONT RD WWTP January, 1986 February March April May June July August September October November December	2PD00035*ED	0H0052914	3.533 5.710 5.949 3.922 3.913 3.448 3.104 3.347 5.219 3.821 5.423	6.08 8.8 6.4 7.2 4.9 5.1 8.9 8.6	12.4 17.8 15.5 10.8 15.9 5.4 7.9 8.1 10.2 11.1 17.6	-4-2232 -32 -53222	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	11.0 6.7 8.8	1.0 .9 1.0 .9 1.0 1.0 1.0 1.0 .9	3.4 2.0 2.1 1.9 1.4 1.3 1.7	143.4 43.6 3.1 14.6 34.3 98.4 8.5 16.6 57.1 50.3		2.8 3.0 1.9 3.3 3.3 4.3 4.8 3.8 3.8
Annual Average Effluent Limits,	30-day Aver	age	4.308	6.2 20.0	12.1 20.0	.3	.0	9.2	1.0	2.2	47.0		3.1

Page No. F-1

POTW 1986 EFFLUENT DATA

POTW NAME	OEPA PERMIT NO	NPDES PERMIT NO	AVG Flow Ngd	EFFLUENT BOD mg/l	EFFLUENT TSS mg/l	EFFLUENT NH3 mg/l	EFFLUENT NO2 mg/l	EFFLUENT NO3 mg/l	EFFLUENT TOTAL P mg/l	EFFLUENT CBOD mg/l	SLUDGE DRY Tons	SLUDGE VOLUME GALLONS	SLUDGE X TOTAL SOLIDS
OREGON SOUTHSHORE January, 1986 February March April May	2PB00007*CD	0H0052591	.343 .655 .705 .560 .525	12.8 23.8 30.9 45.9 39.5	24.2 22.3 32.1 29.8 48.5	10.2 1.2 2.5 3.9 4.0	.3 3.3 .0 .1 .0	-8 2.2 2.0 1.8 .9	1.8 .1 1.1 1.6 .9				
June July August September October November December			.382 .296 .306 .585 .391 .664	41.1 13.1 47.8 43.1 66.9 32.0	27.9 11.1 22.3 26.8 43.4 37.1	5.1 6.2 1.2 4.9 10.8 1.2	.1 .2 .1 .0 .0	.6 .5 .8 .2 2.5	1.3 1.6 8.8 .8 2.7 1.9	23.6 8.8 7.3 30.0 46.4 24.4			
Annual Average Effluent Limits	, 30-day Ave	rage	.492	36.1 20.0	29.6 25.0	4.7	.4	1.2	2.0	23.4			
TOLEDO BAY VIEW WWTP January, 1986 February March April May June July August September October November December	2PF00000*GD	оноо27740	67.744 114.861 126.458 85.022 87.999 110.340 81.420 73.554 76.705 102.152 74.819 92.774	24.9	24.9 34.8 39.3 50.8	7.7 10.5 11.5 7.9	355323221223	935954534222 1111211212222	1.40 .87 1.00 1.07 1.48 1.3 1.5	18.9 13.98 13.98 13.98 13.98 6.04 10.43 8.9 11.9	1891.1 1217.8 1117.3 517.3 558.5 895.2 439.1 521.9 539.3 553.5		6.8 6.4 29.9 29.8 29.4 30.4 31.0 26.0 27.0 31.1 26.0 24.8
Annual Average Effluent Limits	a, 30-day Ave	rage	91.154	19.7 40.0		11.3	.3	1.9	1.1 1.0	10.9	798.3		24.9
WHITEHOUSE *	2PB00062*CD	OH0053350											
January, 1986 February March Aprîl			.285 .365	31.4 14.3	33.8 16.3								
May June July August September October November December			.289 .345 .310 .300 .297 .377 .303 .365	20.0 9.8 7.2 9.5 18.6 18.3 21.0 13.0	33.3	*4*	.0 3.7 1.1 *4* .9 54.0 .1 .5	.1 .5 4.1 *4* 4.0 6.9 16.0	36.0 1.6 3.9 *4* 1.0 1.0 .8 .6	21.5 17.3 9.3 20.8 16.7 19.7 20.1 15.1	.1 .0 .0 .0 .1		.7 .4 .7 .4 .6
Annual Average Effluent Limits	, 30-day Ave	rage (Inter	.324 im)	16.3 30.0	22.4 30.0	5.9	8.6	4.6	6.4	17.6	.0		.5

Page No. F-2

POTW 1986 EFFLUENT DATA

 \sim

POTU NA	OEPA PERHIT NO	NPDES PERMIT NO	AVG FLOW NGD	EFFLUENT BOD mg/l	EFFLUENT TSS mg/l	EFFL NHS mg/l	EFFLUENT NO2 mg/l	EFFLUENT NO3 mg/l	EFFLUENT TOTAL P mg/l	EFFLUENT CBOD mg/l	SLUDGE DRY Tons	SLUDGE VOLUME GALLONS	SLUI X TOTA SOLIDS	
LINCOLN GREEN January, 1986 February March April May June July August September October November December	2PH00004*AD	оноо53520	. 106 . 176 . 262 . 148 . 159 . 172 . 107 . 133 . 161 . 284 . 108 . 160	3.3 16.0 13.6 9.0 15.3 15.3 204.7 83.7	5.5 29.7 5.8 4.3 13.0 16.4 13.0 16.4 60.7			, -						
Annual Average Effluent Limits	, 30-day Aver	age	.165	20.6	20.4									
OAK OPENINGS January, 1986 February March April May June July August September October November December	2PH00013*AD		.078 .141 .088 .081 .131 .150 .133	21.0 10.3 41.3 20.8 34.8 14.0 30.7	14.5 13.7 50.0 33.5 43.4 20.7 31.0	8.4 14.2 7.8 5.3 11.6 28.1				20.2 7.3 38.4 12.0 31.9 5.9 11.4 22.1				
Annual Average Effluent Limits	, 30-day Aver	age	.114	22.4	27.5	9.5				18.7				
OAK TERRACE January, 1986 February March April May June July August September October November December	2PH00014*AD	OHOO58912	.059 .069 .084 .050 .097 .134 .139 .133 .158 .107 .110	4520650833077 2332225326	4.8 6.8 5.5 3.5 5.7 3.5 5.6 39.7 18.7	.1 .1 .2 .1 .1 .3 5.8 5.8				3.24325 41.33 1.22.4292 12.4292	, ,			
Annual Average Effluent Limits	, 30-day Aver	age	.102	5.3	8.0	.6				4.4				

POTW N	OEPA PERMIT NO	NPDES PERMIT NO	AVG FLOW Mgd	EFFLUENT BOD mg/l	EFFLUENT TSS mg/l	EFF Hh. mg/l	EFFLUENT NO2 mg/l	EFFLUENT NO3 mg/l	EFFLUENT TOTAL P mg/l	EFFLUENT CBOD mg/l	SLUDGE DRY TONS	SLUDGE VOLUME GALLONS	SLI X TO SOLIDS	
** SYLVAN WOODS January, 1986 February March Aprīl May June July August September October November December	2PG00000*BD	OH0054089	. 189 . 164 . 154 . 096	46.0 6.5 28.7 67.0	33.0 764.0 18.3 66.0			-						
Annual Average Effluent Limits, COREY	, 30-day Ave 2PG00001*BD		. 151	37.0	220.3									
MEADOWS January, 1986 February March April May June July August September October November December			.041 .061 .076 .078 .053 .096 .078 .080	8.5 3.0 2.0 10.8 8.0 1.7 12.5 6.9	8.8 1.5 3.7 13.4 11.7 15.8 62.6									
Annual Average Effluent Limits,	•	-	.070	6.7	15.2									
BENTBROOK FARMS January, 1986 February March April May June July August September October November December	2PG00002*AD	OH0053759	.080 .100 .134 .157 .108 .125 .087 .075 .106 .136 .143 .144	41.5 12.8 16.3 42.0 143.8 372.5 372.5 110.4 54.3 92.7	32.5 13.3 9.7 52.6 758.7 129.3 337.5 79.8 20.7 169.3									
Annual Average Effluent Limits,	, 30-day Ave	rage	.116	92.5	93.6									

*

** Plant is scheduled to be abandoned in 1988. Plant now out of service; this area has been tapped into the Lucas County sanitary sewer.

Page No. F-4

POTW 1986 EFFLUENT DATA

WOOD COUNTY

POTW NAME	OEPA PERMIT NO	NPDES PERMIT NO	AVG Flow Mgd	EFFLUENT BOD mg/l	EFFLUENT TSS mg/l	EFFLUENT NH3 mg/l	EFFLUENT NO2 mg/l	EFFLUENT NO3 mg/l	EFFLUENT TOTAL P mg/l	EFFLUENT CBOD mg/l	SLUDGE DRY TONS	SLUDGE VOLUME GALLONS	SLUDGE % TOTAL SOLIDS
HASKINS January, 1986 February March April May June July August September October November December	2PA00026*CD	OH0021873	.061 .073 .062 .067 .058 .056 .056 .054 .065 .056 .056	5653845730 86577888 10833	350582.5 6682565005 67426883 7426883	4.1.62057644230				000 4467 3457 441 3587 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.0 2200.0 700.0 5000.0 12500.0 3000.0 1500.0 2000.0 2000.0	8899889988 .99 .89 .89 .89 .81 .8
Annual Average Effluent Limits	, 30-day Ave	rage	.061	7.8 10.0	5.7 12.0	1.0				5.1		3350.0	.6
LUCKEY Effluent Limits	2PA00080*BD , 30-day Ave				65.0					25.0			
PERRYSBURG January, 1986 February March April May June July August September October November December Annual Average	2PD00002*CD	ОНОО21008	2.423 3.190 3.556 2.596 3.351 2.856 2.467 3.273 2.467 3.273 2.896 3.752 3.003	9.5 38.3 15.4 17.00 35.9 23.8 28.8 28.8 36.9 23.8 36.9 23.8 36.8 41.6 26.1	43.5 80.3 26.60 64.1 17.7 46.4 71.3 38.2 65.3 86.6 52.9	11.8 5.8 7.4 8.7 12.8 13.60 15.9 15.9 15.0 11.0		*4* 1.9 1.6 .3 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	2.8		11.7 2.8 10.5 13.7 18.4 6.8 16.8 12.7 10.1 10.6		4552234544345 4.55234544345 4.5
Effluent Limits	, 30-day Ave	rage	5.005	50.0	52.9 50.0	11.0		.0	1.9 1.0		10.0	1	4.7

*** Treatment plant completed and went into use in late 1987.

Page No. F-5

POTW 1986 EFFLUENT DATA

 $C \ge N$

APPENDIX G

Ohio EPA Biological Water Quality Report Draft Monitoring Report

APPENDIX G

LOWER MAUMEE BASIN BIOLOGICAL AND WATER QUALITY MONITORING REPORT

D	R	A	F	T	

Ohio EPA, 1986

Maumee River Macroinvertebrate Data Summary

The macroinvertebrate communities at these sites [M.P. 25.1 to 20.0] were similar to those at Stations 54.9 and 52.3. ICI values ranged from 42 to 54 and diverse mayfly and caddisfly assemblages were again present. Water quality was considered good at Station 32.1 and excellent at Stations 25.1 and 20.9.

Station 15.0 was considered to be at the upper limit of influence of Lake Erie and was upstream from the Perrysburg WWIP and any CSOs. Twenty-two and 15 taxa were collected from the artificial and natural substrates, respectively, including five mayfly taxa. The slack water caddisfly Cyrnellus fraternus was collected in relatively high numbers from the artificial substrates. The ICI score was 24, in the fair range; but given the limiting habitat (pooled conditions) the benthic community was considered indicative of good water quality.

Station 13.6 S (south bank) was downstream from several CSOs and the Perrysburg WWIP; however, the macroinvertebrate community did not indicate any significant impact. A total of four mayfly taxa were collected along with Cyrnellus fraternus. The score was 20 and water quality was considered good.

The ICI score dropped to 14 at Station 13.3 N (north bank) but remained in the fair range. The decreased ICI value was due primarily to the collection of only one qualitative EPT taxa and the absence of mayflies on the artificial substrates. The lack of qualitative EPT taxa in the qualitative sample was attributed to very poor habitat conditions. The loss of mayflies in the quantitative sample may have indicated slight degradation from CSOs. Water quality was considered marginally good.

The ICI increased to 18 at Station 8.8 N and sampling produced three mayfly taxa. However, Cyrnellus fraternus numbers were low and oligochaetes increase substantially. These factors seemed to indicate that Station 8.8 N was slightly more enriched than the stations upstream. Water quality was considered marginally good.

Macroinvertebrate sampling results revealed a depression in water quality between Stations 7.3 and 1.5. Degradation seemed especially apparent along the north bank of the Maumee River. The ICI values for the south bank stations dropped from 20 at Station 13.6 S to 12 at Station 7.3 S and 14 at Station 3.6 S. ICI values for the north bank sites decreased from 18 at Station 8.8 N to 6 at Station 1.5 N.

The discrepancy of ICI values between the north and south indicated that the majority of the degradation was from the numerous CSOs along the North bank with possibly some additional impact from Swan Creek. It is likely that Station 1.5 N was also affected by the Toledo WWTP discharge. This site was immediately upstream from the plant and was in an area heavily influenced by seiches.

Other evidence of a greater problem existing along the north bank of the Maumee River was in the failure to collect any mayfly taxa at Station RM 7.2 N and 4.5 N in failure to collect both mayflies and caddisflies at Station RM 3.1 N and 1.5 N. Conversely, both mayflies and slack-water caddisflies were collected at Station RM 7.3 S and 3.6 S.

The large volume of water carried by the Maumee River apparently provided sufficient dilution to help minimize the impact the CSOs had on the river; however, the depression of the benthic community between river miles 7.3 and 1.5 indicated that the river was unable to fully assimilate the organic loading from one source before being subjected to more wastes farther downstream. Water quality was considered fair at Stations 7.3 S and 3.6 S and marginally fair at Stations 7.2 N, 4.7 N, 3.1 N and 1.5 N.

Water quality appeared to be somewhat improved at Station 9.7 N as a result of dilution of Maumee River water with water from Maumee Bay. Twenty-nine taxa were collected from the artificial substrates including one mayfly taxa and two caddisfly taxa. However, a predominance of oligochaetes indicated moderately enriched conditions. Qualitative sampling yielded nineteen taxa and the ICI score was 16. An impact from the Toledo WWTP was not readily apparent. The plant discharge was probably dispersed prior to reaching this station. Water quality was considered marginally good.

Maumee River Fish Report

Non-point problems are believed to exist in the Maumee River as illustrated by the historic collection record. Historic records (Trautman 1981) show 87 species collected in the Lower Maumee River area. Of these 8/species the Ohio EPA (1986) did not collect 41, a near 50% loss of species. Many of the species missing are occupants of clear vegetated waters, not the kinds of waters associated with intensive agricultural activities. At no time during the survey could one have considered the Maumee River "clear".

[Sites at RM. 19.8 and 17.2] were located in and amongst a series or rapids. Community values were amongst the highest in the study area (IWB 9.0 & 8.6, IWB2 8.5 & 8.1 respectively) here. Higher current levels have kept the bottoms swept clean of silts thus mitigating non-point impacts, and allowing better community structure. In opposition to this, the monotypic habitat probably kept the diversity lower. It should be noted that these four sites were only sampled twice and both passes were during high-water conditions. The collection of darters and small riffle species was nearly impossible though boat maneuverability was much enhanced. RM 14.8 had fair amounts of current in the area and was similar to the upstream riffle-rapids area. RM 14.1 was similar to RM 14.8 though current was much reduced here. True lake effect conditions (near total lack of current) were realized at RM 13.7. Community values dropped nearly a full point (IWB 7.5 IWB2 7.1). This is most likely a consequence of habitat conditions than any discharge from th Perrysburg WMTP (RM 14.5).

Community conditions remained near this level at RMs 9.4, 7.4, 7.3 and 4.7. Species composition did change at RM 4.7 downstream of Swan Creek. Many of the more sensitive species were absent at this site due to degraded environmental conditions via Swan Creek and also numerous upstream CSOs. IWB ranged from 7.8 to 7.1 while IWB2 ranged from 7.5 to 6.4. The next five downstream stations (RMs 3.6, 3.3, 1.5 & 0.6) also formed an identifiable unit. I group these sites because strong seiche activities move pollution plumes both up and downstream in this area. IWB's for these sites ranged between 7.2 and 6.4 and IWB2's ranged between 6.5 and 5.5, approximately a full point below those sites just-upstream. It is believed that upstream movement of the Toledo WWTP plume and the numerous CSOs are the cause of the low community values (primarily the WWTP effect).

The effect of the WWTP is best illustrated by the Maumee Bay sites. Sites 0.1 (Bayshore intake channel) and 0.0 (SE shore Grass Island disposal area) displayed the lowest community values in the Bay Areas. These sites are closest to the Toledo WWTP discharge and showed the best community values in the bay area. When plotted by distance from the WWTP the data show what appears to be a classic DO sag associated impact (RM 0.1). Sites upstream of the WWTP also appear to be effected by the discharge, but not as strongly, and some of this effect is undoubtedly due to accumulating CSO problems.

D.E.L. & T. anomaly data were more confusing. Those sites with the fewest individuals frequently had the lowest values for anomalies, though not always. The strongest statement that can be made is that there is a significant number of anomalies associated with the Bayshore discharge. In light of the use of chlorine at such facilities this type of situation is not surprising.

Lower Naumee River - 1986 Data Summary

- 1. Background water quality at Grand Rapids dam pool (RM 32.6) was good with D.O. of 5.8 10.3 mg/l, low NH₂ (<0.16 mg/l) and NO₂ (<0.11 mg/l), phosphorus (<0.7 mg/l), phenolics (< 20 ug/l), cyanide (<0.005 mg/l), and cadmium, chromium and nickel at or below detection. Three violations of WQS were measured for copper (15, 20, 35 ug/l) along with a slight increase in lead (up to 10 ug/2) and zinc (up to 80 ug/l). NO₃ ranged from 0.35 5.0 mg/l and TSS was as high as 297 mg/l but usually averaged 50 mg/l or less.
- 2. At Waterville (RM 20.1) D.O. increased to 8.1 13.3 mg/l (rapids), NO₂ (0.02 0.20 mg/l) and NH₃ (< 0.09 mg/l), were similar to upstream. Phosphorus of 0.2 0.5 mg/l was a little less but TSS stayed high at 55 141 mg/l. Cadmium, Chromium, Nickel, Lead, and Zinc stayed the same or declined. Only one WQS violation for Copper (15 ug/l) was detected.</p>
- 3. Between Waterville and Toledo (RM 17.2) D.O. continued at good levels (6.5 11.4 mg/l). NH₂, NO₂, NO₂, Phosphorus, TSS Cd, Cr, Pb, Ni, and Zn were similar to low background. Still had 3 violations of WQS for Copper (15, 15, 30 ug/l).
- 4. On the south side of Ewing Is. (RM 13.6), downstream of the Perrysburg WWIP and CSOs, D.O. content stayed betweek 6.2 and 11.1 mg/l. NH₂ generally was low (< 0.16 mg/l) and NO₂ (0.02 - 0.17 mg/l) and NO₂ (1-4 mg/l) were similar to upstream. Phosphorus (0.1 - 1.1 mg/l) slightly increased and TSS was elevated (22 - 538 mg/l) particularly in July and late September to October. Cd, Cr and Ni were at or below detection while Pb of 14 ug/l, Zn of 90 ug/l and two violations of WQS for Cu (18, 30 ug/l were collected.
- 5. The transect at RM 9.4, Eagle Pt. Colony to upstream of Walbridge Marine, had a good range of dissolved oxygen content (6.1 10.9 mg/l) and NO₃ was transported in amounts similar to upstream (up to 4.7 mg/l). NO₂ up to 0.18 mg/l also was same as upstream. NN₃ (max. of 0.12 mg/l) generally was as low as upstream. There was trypically a greater amount of TSS (22 538 mg/l) in bottom samples. Copper violated WQS on 15 and 17 August. Zinc increased to a max. of 100 ug/l but usually was <50 ug/l. Cd, Cr, Pb, Ni, phenolics and cyanide were not significant. Phosphorus stayed approximately 1 mg/l. Depths here in the middle of the river typically were greater than 15 feet but less than 20 feet.</p>
- 6. The next transect at RM 6.5 was located in the turning basin at the upper end of the shipping channel (depths average 30 feet). Dissolved oxygen declined to 5.6 8.4 mg/l, usually being greater at top but not by more than 2 mg/l. NO₂ (0.3 4.4 mg/l) and NO₂ (<0.02 0.19 mg/l) was in the same range as upstream. However, NH₃ increased a small amount up to 0.28 mg/l particularly later in summer (Aug. Sept.). Phosphorus continued at <0.05 0.60 mg/l while TSS was similar to and occasionally higher than upstream (19 280 mg/l) with greater concentrations near the bottom. Copper violations occurred on the same two days in August as upstream. Zinc generally stayed similar to upstream (<10 80 ug/l). Arsenic (source LOF landfill) of up to 23 ug/l and lead of 12 ug/l were detected but usually much less was found. Cyanide, phenolics, oil/grease, Cd, Cr, and Ni were not significant.</p>
- 7. The Cherry Street Bridge transect (RM 4.9) is downstream from Swan Creek and CSOs. D.O. was further depressed to 3.9 7.2 mg/l, and usually <1 mg/l of difference (max. 3 mg/.1) was detected between bottom and surface. The largest decreases in D.O. occurred from July to August. NO₂ of 0.3 4.4 mg/l and NO₂ (0.04 0.22 mg/l) were similar to upstream. NH₂ definitely increased in late August through September (0.15 0.35 mg/l). On July 15 there was a distinct elevation in Arsenic (27 + 34 ug/l); all other days were low. Zinc was similar or occasionally higher than upstream (<10 90 ug/l).</p>
- 8. One cadmium of 0.6 ug/l was taken near the bottom on August 8 and copper violations primarily occurred in July and early August. Lead was similar to upstream except for one very high value (70 ug/l) which was the only one in the study area and may be due to sampling/analysis error. There was no real change in TSS (18 296 mg/l). and Cr, Ni, CN, phenolics and oil/grease were not of note.

- 9. The Maumee River downstream of I-280 bridge (RM 3.33) also had a lowered range of D.O. (2.6 7.4 mg/l) which was similar to upstream except for slight reduction during August (2.6 6.0 vs. 3.0 7.0 mg/l upstream). No₂ (0.4 4.7 mg/l), NO₂ (.05 0.18 mg/l), NH₃ (S0.05 0.37 mg/), phosphorus (0.1 0.6 mg/l) and TSS (21 165 mg/l) were comparable to ²upstream. Arsenic increased to 32 (surface) + 40 (bottom) ug/l in July but was similar to upstream at other times. Cadmium was more often above detection limits but <0.6 ug/l. Copper was elevated in July and early August, as expected. Lead generally was low and zinc was similar to upstream. Chromium, nickel, phenolics, cyanide and oil/grease all were not significant.</p>
- 10. Just upstream of the toledo Bayshore WWTP and bypass (RM 1.5) D.O. content of 3.2 7.1 mg/l was not much greater than the previous site nearly 2 miles upstream. NO₂ continued to range from 0.5 5.0 mg/l while NO₂ usually was a bit higher (0.02 0.43 mg/l) than upstream. NH₂ dramatically increased to as much as 2.15 mg/l but never violated WQS. A lot of the impact in this area is due to lake effect carrying bypass waste upstream and holding bypass and effluent in the area. Phosphorus typically was <0.75 mg/l. TSS also was comparable to upstream but elevated in bottom samples on 3 days (142 450 mg/l). Arsenic decreased, as did Cd, while Cr, Ni, Pb and Zn were below detection or as low as upstream levels. Copper violations persisted, but never very high.</p>
- 11. Downstream of the Bayshore WWTP, D.O. generally declined a small amount to 3.3 6.3 mg/l while NH₂ was similar to upstream (some higher, some lower) with four days > 1 mg/l. NO₂ (0.5 5.0 mg/l) and NO₂ (0.02 0.56 mg/l) were comparable to upstream. Zinc on August 27 (170 ug/l) violated WOS; all other days usualty were <75 ug/l. similar to upstream. Phosphorus (<0.7 mg/l), ISS (21 258 mg/l), Cu, Pb, Cd, Cr, and Ni were equally low as upstream or near/below detection limits.</p>
- 12. The last narrow portion of the river before Cullen Park estuary (RM 0.5) had only 1 low D.O. of 3.6 mg/l; at all other times D.O. ranged from 4.0 7.3 mg/l, both greater and lesser than upstream. NH₂ generally was less than upstream but still up to 1.2 mg/l was detected. Ranges for NO₂ (0.5 5.1 mg/l), NO₂ (0.02 0.20 mg/l), phosphorus (<0.5 mg/l) TSS (23 264 mg/l), Cd (<0.5 mg/l), Cu (<15 ug/l), and Pb (<15 ug/l) were similar to upstream. Zinc generally was low (<65 ug/l) except a bottom sample of 105 ug/l. Cr, Ni Cyanide, and phenolics were less than detection.</p>
- 13. The Maumee Estuary in the Cullen Park sample area (RM 0.2) was shallow (6 ft. max.). D.O. of 4.5 9.7 mg/l was variable in comparison to upstream. NH₂ was similar to upstream (0.09 0.97 mg/l) but as high as 1.4 mg/l. Ranges for NO₂ (0.5 5.1 mg/l), NO₂ (0.62 0.20 mg/l), phosphorus (<0.5 mg/l) were comparable to upstream. TSS usually was <60 mg/l but up to 150 mg/l. Copper typically was <10, but in July, 20 ug/l was detected. Zinc was <65 ug/l except on August 27 when 140 and 470 ug/l surface and bottom concentrations were found the same day as the violation at RM 1.0 (but not at RM 0.5). As, Cd, Cr, Pb, Ni, and Se were near or below detection.</p>
- 14. At Maumee estuary RM 0.1 (actually the average 16 18 feet deep Bayshore power plant intake channel) the D.0. range was slightly reduced (2.1 8.0 mg/l) while NH₃ was frequently lower than the river proper (<0.05 0.58 mg/l) but as high as 1.1 mg/l. NO₂ also occasionally was higher (0.02 0.27 mg/l) than upstream. NO₂ (0.6 5.2 mg/l), phosphorus (<.5 mg/l), and fSS (23 81 mg/l) were similar to lower than upstream. Copper typically was <12 ug/l but with violations in July. Zinc declined to <60 ug/l on all dates and depths. As, Cd, Cr, Pb, Ni and Se were near or below detection.</p>
- 15. Maumee Estuary RM 0.0, which is in more direct line with RM 0.5, had a D.O. content similar to RM 0.5 (3.1 7.5 mg/l) while NH₂ (0.05 0.86 mg/l) tended on occasion to be a little higher (max. 1.3 mg/l). NO₃ (0.5 5.3 mg/l), NO₅ (0.02 0.25 mg/l), and phosphorus (≤0.6 mg/l) were comparable while TSS (10 121 mg/l) could be a small amount greater than upstream. Copper (up to 20 ug/l) was detected in July and early August. Zinc was elevated on August 27 (same day as the other upstream violations) at bottom to 140 ug/l; otherwise it was ≤ 60 ug/l. Cd, Cr, Pb, Ni and Se were near or below detection.

Swan Creek Macroinvertebrate Data Summary

Swan Creek was sampled at river miles 10.2, 4.9, 3.9, 2.6, 1.2 and 0.6 primarily to evaluate the impact of numerous CSOs which flow into the stream between river miles 4.3 and 0.8. Station 10.2 had a relatively diverse benthic community but was suggestive of moderate enrichment. The ICI scored a 24 which is in the fair range. The artificial substrates yielded 33 taxa numerically predominated by the pollution intermediate mayfly Stenacron. Qualitative sampling resulted in the collection of 31 taxa predominated by isopods and midges. The natural substrates consisted primarily of sand which probably limited taxa richness and density. Water quality was considered fair.

The ICI decreased to 16 at Station 4.9 indicating that urban runoff was degrading the stream. Twenty-eight taxa were collected from the artificial substrates. The mayfly Stenacron was again numerically predominant in the quantitative sample. Qualitative sampling produced 22 taxa with midges predominant. The lower ICI value was due primarily to fewer mayfly and total taxa and the absence of caddisflies. Water quality remained fair.

Station 3.9 was severely degraded apparently by organic wastes and oil from several CSOs. The stream bottom was covered with a thick layer of septic muck and the water surface was coated with a skim of oil. The natural and artificial substrates produced 8 and 20 taxa, respectively; both were predominated by oligochaetes. The ICI scored a 6 at this site. Water guality was considered poor.

Station 2.6 was also severely degraded. The water surface and substrates were very oily and biological conditions were poor. Quantitative and qualitative sampling resulted in the collection of 13 and 7 taxa, respectively. The ICI score was two. The CSOs which enter Swan Creek between river miles 3.9 and 2.6 were at the very least preventing recovery from the degradation observed upstream and were probably contributing significant additional degradation. Water quality continued to be poor.

The CSOs located between river miles 2.6 and 1.2 did not appear to be contributing significant additional organic load to the stream. However, water quality remained poor due to the impact of the CSOs farther upstream. Thirteen taxa were collected from the artificial substrates at Station 1.2 with lung snails of the genus Physella and oligochaetes numerically predominant. a single Stenacron mayfly was also collected in the quantitative sample. The natural substrates supported a low density benthic community with no organisms in predominance.

Water quality was considered poor at Station 0.6. However, a small improvement was noted in the benthic community. Due to deep water at this station, qualitative sampling was greatly limited and the artificial substrates were suspended in the water column under a float. Ten taxa in low density were collected during qualitative sampling. The artificial substrates produced 23 taxa with oligochaetes numerically predominant. Much of the increase in total taxa compared with Station 1.2 is attributable to the collection of additional pollution tolerant midge taxa. Four Stenacron individuals were also collected from the artificial substrates. The ICI remained in the poor range with a score of 8.

Swan Creek Fish Community - 1986

The site at RM 10.2 was upstream from all listed permitted dischargers. A significant portion of the drainage basis was upstream from this site (approximately 66 sq. mi.). Most of this is split between agricultural usage and swamp and marsh land. With that background this control site was definitely impacted or had been impacted and not had a chance to recover. Habitat definitely was not a factor affecting the fish community. This site had very good riffle, pool, run development and diverse instream structure. Despite this, cumulative species was only 19 with an average of 13 species per collection. Biomass and numbers were also lower than expected. I suspect past and probably present agricultural practices have reduced the diversity and productivity at this site. Extensive water quality problems and roller dam downstream would prevent improvement by re-invasion from downstream.

The next site at RM 4.4 was located just upstream from a roller dam which backed the water up making the zone deeper. The zone still had very good flow but was deep enough to require boat electrofishing. The deepened habitat supported more larger river species with a resultant higher cumulative number of species but a lower average number per sampling. Although no CSO;s are listed in the study plan one was noted halfway through the zone and numerous other storm sever dischargers were also present. The area just upstream was also highly urbanized and these factors account for the lack of improvement in the fish community. Again the dam prevents upstream migration.

Swan Creek was extremely degraded in the lower lake effect area (RMs 3.9, 2.6, 1.2 and 0.5). Most of the impact is believed to originate from the CSO at RM 3.45 (maybe? 3.15). In the vicinity of and downstream of this discharge great quantities of creosote oil were noted on the surface and in the sediments. At one point in the mid summer (1986) a fish kill was observed which left RM 2.6 devoid of fish and RM 1.2 with only a few goldfish. Fish community conditions were poor in all of these areas of Swan Creek with RMs 2.6 and 1.2 being very poor. Faunal conditions were the best at the near mouth site (RM 0.5). This is primarily due to an influx of cleaner Maumee River water during seiches and invasion of Maumee River fishes. Conditions in the most degraded areas of Swan Creek are so severe that even dead rats (Norwegian) were observed floating on the water (during the fish kill incident). Swan Creek is extremely degraded, is effecting the Maumee River main stream, and must be addressed immediately in light of human health hazards associated with creosote oil.

Swan Creek Data Summary 1986

Swan Creek - Eastgate Road (RM 10.2) - upstream water quality

This segment generally had good water quality with D.O. of 6.8 - 9.2 mg/l, low NH₂ (<0.05 mg/l), NO₂ (<0.06 mg/l), phosphorus (<0.5 mg/l), and oil/grease (<2 mg/l). One violation of WQS for phenolics (23 ug/l) was collected. Most metals (As, Cd, Cr, Pb, Ni, Se) were near or below detection. A copper violation of 13 ug/l, a zinc of 45 ug/l, and NO₂ up to 5 mg/l reflected an agricultural watershed (also the Cu and phenolics violations occurred during a period of rainfall runoff.)

Swan Creek - Detroit Avenue (RM 4.9)

Water quality continued to be good with D.O. at 5.6 - 9.5 mg/l but with small to distinct increases in NO₂ (0.02 - 0.18 mg/l), NH₂ (<0.05 - 0.72 mg/l), oil/grease (3.6 mg/l), phosphorus (0.1 - 0.9 mg/l), TSS (20 - 80 mg/l), tead (up to 13 ug/l) and zinc (up to 70 ug/l). A copper violation of 20.3 ug/l was taken during runoff. Sources may be adjacent urban areas. There are no industrial discharges or CSOs upstream.

Swan Creek - Champion Street (RM 3.9) downstream of CSOs (2)

Some degradation occurred in this region particularly during the rainfall events on August 7 and 27. D.O. content typically was good (4.7 - 9.1 mg/l) except for a 2.7 mg/l. This segment of the creek did have the highest values in the study area for BOD_c (12 mg/l), COD (104 mg/l), NO₂ (0.6 mg/l), NH₂ (2.4 mg/l) and phosphorus (1.7 mg/l) although none were in violation of WQS. Copper of 9 and 17.7 ug/l did violate WQS while increases were noted for lead (17 ug/l), zinc (90 ug/l) and cadmium (0.5 ug/l).

Swan Creek - Hawley Street (RM 2.6)

As with the Champion Street area the D.O. was slightly less (5.8 - 8.0 mg/l) than background but was greatly reduced on occasion to 0.4 - 2.3 mg/l. Nitrogenous compounds and phosphorus typically were similar or less than upstream. A copper violation of 19 ug/l persisted along with higher lead (20 ug/l), zinc (100 ug/l), and TSS (33 - 82 mg/l). The sample location on a bridge precluded detecting much effect of the CSO underneath. A phenolics violation (41 ug/l) is attributable to a discharge from Jennison - Wright (creosote wood treater) to the sanitary sever. This problem has been terminated.

Swan Creek - Collingwood Blvd. (RM 1.2)

Lake effect could back up flow. D.O. usually was between 4.4 - 8.6 mg/l but bouts of low values from 0.4 - 2.7 mg/l did occur. In addition, increased copper (11.8 and 18.8 mg/l), phenolics (34 ug/l), cadmium (0.7 ug/l) and TSS (100 mg/l) were detected. Nitrogenous compounds and phosphorus were similar to or less than low upstream values. All other parameters were similar to upstream and not of note.

Swan Creek - St. Clair Street (RM. 0.5)

The creek is backed up at times by the Maumee River. D.O. range was slightly lower (3.7 - 8.8 mg/l) with two low values of 0.2 and 2.6 mg/l. NO₂ was as high as 0.46 mg/l and NH₂ of 0.15 - 1.1 was at times higher than upstream. Phosphorus, oil/grease, phenolics, metals, and TSS were similar or tess than upstream. Copper violations persisted (10, 12.9 ug/l).

Tennile Creek Macroinvertebrate Data Sunnary

Tenmile Creek was sampled using qualitative methods at river miles 5.1, 4.1 and 1.0. Sampling was conducted primarily to determine the impact of Reichert Stamping and the Kings Road landfill on water quality as reflected by indigenous macroinvertebrates.

Station 5.1 was downstream from Reichert Stamping. Station 4.1 was downstream from the Kings Road landfill. Benthic communities were similar at the two stations. Isopods were predominant, and midges and mayflies were common. Overall density was considered low. Twenty-eight and 35 taxa were collected from Stations 5.1 and 4.1, respectively. The increase in number of taxa at Station 4.1 was due largely to the collection of air breathing beetles and hemipterans which are of little value in determining water quality. The stream appeared to be moderately degraded at both sites but cause was not readily apparent. A pipe discharging septic waste was noted at Station 5.1 and indicated that improperly operating septic systems, as well as Reichert Stamping and the Kings Road Landfill, may have been contributing to the degradation at these two sites. Water quality was considered fair to marginally good.

Water quality appeared to be less degraded at Station 1.0. However, enrichment was evident in the high density macroinvertebrate community. Thirty-six taxa were collected with water pennies, heptageniid mayflies, and hydropsychid caddisflies predominant. Water quality was considered marginally good.

Ottawa River Macroinvertebrate Data Summary

The Ottawa River was sampled using quantitative and qualitative methods at river miles 18.5, 11.0, 9.0, 7.4 6.9, 4.9 and 1.6. The sampling was conducted primarily to determine the water quality impacts of numerous CSOs, the AMC Jeep Corp. and the Dura and Stickney landfills.

Station 18.5 was upstream from the previously mentioned sources of degradation and had good riffle/run development and a primarily rubble substrate. The artificial substrates produced 40 taxa but had an ICI score of 24 which is in the fair range. Forty-two taxa were collected from the natural substrates. Though relatively high numbers of taxa were collected, the majority of organisms were pollution intermediate or tolerant. The low number of pollution sensitive types indicated that some degradation was occurring. Water quality was considered fair.

The benthos at Station 11.0 reflected continued moderate degradation apparently due to urban runoff. Twenty-five and 28 taxa were collected from the artificial and natural substrates, respectively. The ICI scored a 14 which is in the fair range. Only one mayfly taxon was collected at this station while seven taxa were present at the previous station. In addition, pollution tolerant black flies and pollution intermediate caddisflies of the genus Cheumatopsyche increased in predominance on the natural substrates. Water quality remained fair but was apparently of somewhat poorer quality than at Station 18.5.

At Station 9.0 the stream was slow flowing and channelized. The effects of this less suitable habitat alone could be expected to lower the ICI value somewhat, however, an ICI value of 6 indicated that degradation from CSOs was greatly impacting the benthos. Twenty-three and 19 largely pollution tolerant taxa were collected from the artificial and natural substrates, respectively. Water quality was considered poor.

Stations 7.4, 6.9, 4.9 and 1.6 were extensively channelized and had either no perceptible current or were affected by sieches. Even though the ICI was developed for use in areas with observable current, it seemed to accurately reflect the poor biological condition at these lower stations on the Ottawa River.

Station 7.4 was downstream from the AMc Jeep Corp. and several CSOs. Water quality was considered poor but, due to degradation which was occurring upstream from the AMC Jeep Corp. from CSOs, the impact of the industrial dis-charges was not readily apparent. The ICI value was six and the benthic community was composed almost exclusively of pollution tolerant organisms.

The biological condition continued to decline at Station 6.9 and 4.9. Diversity was low and ICI scores of 4 and 2 were recorded from the two stations, respectively. Once again, the impact from the multitude of sources upstream precluded an evaluation of degradation due to the Dura and Stickney landfills at Station 4.9. Water quality was poor at both stations.

Water quality appeared to be slightly improved at Station 1.6 probably due to the dilution of degraded river water with cleaner water from Maumee Bay. Diversity remained low with 14 and 18 taxa collected from the quantitative and qualitative sampling, respectively. The ICI value of 6 was in the poor range. The collection of the mayfly genus Caenis from the natural substrates and the caddisfly Cyrnellus fraternus from the artificial substrates were indications that water quality was somewhat improved compared to the previous sites. However, water quality remained poor.

Tenmile/Ottawa River Fish Community 1986

The upstream site RM 5.2 was chosen to serve as a control site for this survey. The habitat has been extensively modified - now consisting of a straight riprapped channel with an occasional riffle. Extensive canopy indicated that this had been done many years ago. Additionally only one permitted discharge was noted in the study plan upstream from the site, Medusa Cement whose discharge was eliminated in 1980(7). Despite these factors I would have expected a more diverse sample with higher biomass sample from this site. High suspended solids from the Medusa Cement Co. could have historically reduced these community attributes but there is sufficient area upstream, from which to adequately recolonize this zone. I suspect an invest-igation into their operation may find sloppy housekeeping. The site at RM 4.2 was downstream from the Kings Road Landfill and several sand and gravel operations (which do not have permits listed). The upstream half of the sampling zone was carpeted with sand. It appeared that these sand and gravel operators have probable been gravel washing which resulted in only site in this survey with sand predominating. Also, if gravel washing was occurring, the high suspended solids may also be contributing to the decline in the fish community seen here. The Kings Road Landfill probably also contributed to the decline, since the lower portions of the sampling zone had sufficient habitat heterogeneity to support more fish and larger fish than encountered. It also appears that the Kings Road Landfill may be impacting as far downstream as the next site RM 1.1. Habitat was much habitat the only major improvement was in relative number of individuals. Relative weight and mean number of species decline slightly. Three other factors could also contribute to water quality problems at this site (in estimated decreasing order of importance) a CSO at the upstream of the store, France Stone Company on an unnamed tributary and the adjacent golf course which dumped fine grass clippings into the store on a regula problem.

The upstream site on the Ottawa River RM 17.8 showed modest improvement from the downstream site on Tenmile Creek with The upstream site on the Ottawa River RM 17.8 showed modest improvement from the downstream site on Tenmile Creek with the number of individuals captured almost doubled and relative weight five times as great (Stream flow also was higher). The next site was considerably further downstream at RM 9.8, adjacent to the Ottawa Park Municipal Golf Course. A very noticeable impact was detected at this site. Cumulative species dropped by 5, mean number of species by over 5, relative numbers were only 25% of the upstream value with relative weight experiencing the same loss. Although habitat was somewhat poorer, a distinct odor of decaying sewage was noticed during all samplings. A portion of the Toledo sanitary sewer system is know to parallel the stream upstream from the zone I & I problems are suspected as the cause for the impact. The next site at RM 8.7, which was sited to be upstream from the Jeep Corp. outfalls (and dst from some CSOs) actually turned out to have some input from the Jeep Corp. in the middle of the sampling zone. What appeared to be thinned silver paint was noted at the 54" CSO at RM 8.45 just upstream from the Jeep Corp. painting operation. On another date a large plume of what appeared to be water miscible oil as detected.

Erosion of the banks is also a problem with trash and debris washing out in spots from where they were originally landfilled and covered. The site at RM 4.7 was downstream from the DuPont Company outfalls. Improvement was noted at this site with seven more species, double the relative number of individual and six times the biomass.

This site is also in the estuary effect and this is reflected by an increase in "lake" species. The community was still severely impacted from upstream sources, i.e. the CSOs, landfills, and DuPont Company, and bears further investigation including characterization of the chemical composition of the landfill leachate and DuPont Company outfall. Bioassays probably also should be considered in view of the location of the Ottawa River mouth in Western Lake Erie. The downstream most site showed dramatic improvement with an increase in all community parameters. This site was essentially a Lake Erie harbor site and the catch reflects that. It appears the dilutions of Ottawa River (polluted) water with Lake Erie water allowed recovery to almost WWH.

Tenmile Creek - Ottawa River Data Summary 1986

Tenmile Creek - Centennial Road (RM 5.1) - Upstream

This segment generally had good water quality with D.O. of 5.2 - 9.7 mg/l. The average nutrient load was moderately low with (<0.18 mg/l) NH_z (<0.04 mg/l), NO₂ (4.44 mg/l), NO₂ (0.59 mg/l) phosphorus. All phenolic samples were found to be below detectable limits (<20 mg/l) and oil and grease values averaged (<1.35 mg/l). Five metals (Cd, Cr, Pb, Ni, Zn) were near or below detection. There was one copper violation of (9.6 ug/l). The iron values were high and averaged (1,658 mg/l). One total (CN) cyanide sample measured 0.16 mg/l. Agriculture was the primary influence on this segment. The only fecal coliform sample measured out at 7,400 colonies/100 ml.

Tenmile Creek - Sylvania Avenue (RM 4.1)

Water quality continued to be good with D.O. of 6.8 - 9.8 mg/l. There were slight decreases in the average nutrient load. Ammonia levels dropped to <0.11 mg/l, as did NO₂ (4.04 mg/l) and phosphorus (0.17 mg/l). The NO₂ level increased to 0.22 mg/l. Iron values decreased slightly, but were still elevated at 1,565 mg/l. There were two cadmium values measured a5 0.6/ug/l. This site was located between the King Road Landfill and a massive quarry operation.

Tenmile Creek - Old Post Road (RM 1.0)

Data obtained from this station shows that conditions have improved slightly from the already good upstream water guality. D.O. ranged from 8.3 to 11.2 mg/l, and the average value of 9.5 mg/l was found to be the highest in the Tenmile Creek - Ottawa River study area. Average nutrient values continued to diminish with low NH₂ (<0.05 mg/l), NO₂ (<0.04 mg/l), phosphorus (0.12 mg/l), and NO₂ (3.46 mg/l). Most metals measured undetectably low, except iron and zinc, which were found to be (730 ug/l) and (20 mg/l) respectively. Rural agriculture, suburban subdivisions, and a golf course were situated between this site and the last upstream site. The one fecal coliform sample taken here was found to contain 6,100 colonies/100 ml.

Ottawa River - Sturbridge Road (RM 17.9)

Good water quality continued to be exhibited here with D.O. of 6.5 - 11.5 mg/l. Nutrient levels remained low, NH₃ (<0.05 mg/l), NO₂ (<0.05 mg/l), phosphorus (0.12 mg/l), and NO₂ (4.00 mg/l). Metals values remained low. Iron, however, increased on the average to 1,798 mg/l and cadmium values of 0.6 ug/l and 0.7 ug/l were detected in two of the samples. This station was located about two miles downstream from the Sylvania WWIP.

Ottawa River - Bancroft Street (RM 12.2)

Water quality remains good here with a D.O. of 5.8 - 9.0 mg/l. Nutrient levels increased slightly from the last site, but remain low, NH₂ (0.10 mg/l), and NO. (<3.64 mg/l). Iron was found to have increased in concentration to a level of 2,405 ug/l. Otherwise, metals were found to be similar to low upstream values. The fecal coliform sample obtained fro this site had 4,600 colonies/100 ml.

Ottawa River - Auburn Avenue (RM 8.9)

Water quality was found to be similar to upstream conditions. Surface D.O. ranged from 4.2 - 10.5 mg/l and averaged (7.1 mg/l), slightly lower than upstream values. Nitrogenous compounds and phosphorus were similar to or less than upstream values. Iron remained high (1,890 - 3,500 ug/l) and showed a small average (2,582 ug/l) increase. Lead 4-13 ug/l) increased slightly as did zinc (15 - 45 ug/l). Oil was observed on the water surface on August 7, and the samples taken were found to contain a high level of COD (50 mg/l) with one corresponding (WWH-WQ) violation for copper (7.6 ug/l). One fecal coliform sample (340,000 colonies/100 ml) was taken after a storm event.

Ottawa River - Berdan Avenue (RM 7.4)

Near surface water quality was similar to upstream conditions, however, D.O. did decline on the average and varied considerably (2.3 - 10.3 mg/l) from sample to sample. On two occasions, diurnal shifts in D.O. were recorded, (2.6 - 0.4 mg/l) on the 14th and 15th of August and (9.2 - 4.7 mg/l) on the 21st and 22nd. In addition, a near bottom measurement of 2.6 mg/l on the 21st as compared to the 9.2 mg/l near surface value indicated that there was a large amount of D.O. stratification occurring here. The depletion of near bottom D.O. may have been due to the presence of a large sludge bed. The discharges of three nearby combined sewer overflows were probably responsible for the deposition of this bed. AMC Jeep Corporation discharges effluent just upstream from this site and may also have contributed. Nutrient levels changed very little from upstream. NO., (2.9 mg/l) declined on the average, while NO. (0.05 mg/l) remained the same. NH, (0.11 mg/l) and phosphorus (0.2 mg/l) had minimal increases. Iron (1,730 - 3,720 ug/l) remained high, while other metals (As, Cd, Cr, Ni, Se, Zn) were at or near detection limits. Copper (6.1 ug/l) and lead (7.0 ug/l) had little average increases. One cadmium sample was measured at 0.6 ug/l. There was a fecal coliform sample (250,000/100 ml) that was very high.

Ottawa River - Lagrange Street (RM 6.4)

Oxygen levels continued to decrease and varied considerably (1.7 - 10.1 mg/l). The lowest average D.O. value (4.0mg/l) was found to be here. Diurnal sampling indicated major shifts in D.O. levels. These shifts were (6.9 - 1.5 mg/l) on the 14th and 15th of August and (8.5 - 2.6 mg/l) on the 21st and 22nd of August. The near bottom measurement of 1.9 mg/l on the 21st as compared to the 8.5 mg/l near surface value indicated that stratification also occurred here. Nutrient levels remained about the same. NH₂ (0.24 mg/l) increased somewhat. Copper (7.7 ug/l), lead (12.2 ug/l) and zinc (39.2 ug/l) also increased on the average. Iron (1,380 - 4,310 ug/l) increased also and averaged 3.063 ug/l. The other metals were at or below detection limits. Sampling observations from August 6 to 7 indicted that stream flow was reversed (lake effect) as this site. At the same time, a large amount of surface oil was spotted moving upstream along the north bank form some downstream source. Three CSOs located in the vicinity may have been responsible for the oil. The highest fecal coliform value (540,000/100 ml) was found here.

Ottawa River - Stickney Avenue (RM 4.9)

Oxygen levels (3.0 - 9.6 mg/l) varied a lot here and averaged 5.7 mg/l. Significant shifts in D.O. were measured. These shifts were (5.3 - 2.2 mg/l) on the 14th and 15 of August and (6.0 - 2.4 mg/l) on the 21st and 22nd. The near bottom measurement of 1.2 mg/l on the 21st indicated that the D.O. was also stratified. All nutrient values increased at this site. NH₂ (0.12 - .4 mg/l) averaged 0.32 mg/l. NO₂ (0.3 - 9.65 mg/l) varied considerably and rose to a level of 3.74 mg/l. Phosphorus did not vary much (0.15 - 0.27 mg/l) and showed a small average increase (0.22 mg/l). NO₂ (0.04 - 0.08 mg/l) remained about the same at 0.06 mg/l. Iron (2,900 - 4,150 ug/l) increased to an average of 3,480 ug/l. Two copper values (13.3 and 39.6 ug/l) were found to be in violation of WWH-WQ standards. Zinc (40-135 ug/l) concentrations increased and averaged 72.5 ug/l. There was a slight increase in lead (11-17 ug/l) detected and one cadmium value of 0.7 ug/l was recorded. Other metals (As, Cr, Ni, Se) were at or below detection limits. The only fecal coliform sample taken measured out at 4,000 colonies/100 ml.

Duck Creek Macroinvertebrate Data Summary

Duck Creek was sampled at river miles 3.0, 2.1 and 0.4. Station 3.0 was located downstream from the Toledo Edison Acme station ash ponds and immediately adjacent to a large lagoon used by the Toledo WTP. The majority of flow volume, although small, was originating as overflow from this lagoon. Apparently, large amounts of waste lime had previously been discharged from the lagoon into the creek. A thick layer of soft gray much covered the entire stream bottom. Qualitative sampling produced 10 taxa collected primarily from grassy margins. Quantitative sampling yielded 6 taxa and the ICI score was zero. The benthic community was obviously severely affected by the ambient conditions.

The benthic community of Duck Creek improved only slightly at Stations 2.1 and 0.4. Quantitative sampling yielded 16 and 19 largely pollution tolerant taxa from the two sites, respectively. ICI values were in the poor range (12 and 4, respectively). The poor biological condition of the stream was apparently due to continued effect of the deposition of large amounts of lime slurry downstream from the Toledo WTP.

Duck Creek Fish Community - 1986

Duck Creek Fish Community - 1986 The Duck Creek fish community was severely impacted at all sites sampled in 1986 as a result of both poor habitat and water quality problems. The upstream-most site at RM 3.0, was situated on the east side of Wheeling Street and downstream from a marsh. The Tolede Gdison Acme plant fly ash disposal Lagoon was also upstream from the sampling site. If these factors were not enough, the discharge from the Toledo WIP sludge disposal lagoon was situated at the upstream end of the sampling zone. To all of this add that the stream channel was straight as an arrow and lettered with trans and lined with lime or alum sludge and you get a feeling for the habitat and water quality conditions present at the site. Only seven species were captured at this site and except for the stoneroller and mosquitofish all are considered to be tolerant of pollution. The question that this site was to answer was, does the Acme fly ash disposal lagoon impact the Duck Creek biological fish community? Ideally, we would have preferred to situate a site upstream from where we did, but the presence of the marsh prevented that. This prevents us from determining the exact extent to which the discharge from the fly ash lagoon impacts the fish community. If the discharge from the WIP's lagoon was eliminated and the sludge dredged out or allowed to flush out over a period of years, you would expect some improvement in the fish community and then be able to determine the extent of degradation from the Acme lagoon. Unfortun-ately, adjacent to the WIP's upland lagoon, a portion of Duck Creek was culverted with local residents revealed that this sampling site was in an area influenced by Lake Erie. Again it was not possible to determine the extent of the impact cause by the Acme Fly ash lagoon due to the poorness of the habitat. Actually, in all my years sampling, this was probably the most difficul area to sample that I have been exposed to. The bottom consisted of a chest deep mixture of silt, WIP sludge, trash and sti

The site at RM 0.5 was sampled by boat and was definitely influenced by water levels in the lower Maumee River and, by extension, Lake Erie. This is reflected in the fish found at this site. Species like walleye, white bass and yellow perch were collected at this site. Despite the presence of these occasional sport species, the fish community appeared impacted with the majority of the species tolerant and generally of small size indicating stress to the community.

Eliminating the WTP's sludge run-off to Duck Creek will definitely help the physical habitat in Duck Creek and quite probably help water quality.

Discharging 2.8 MGD of effluent contaminated with O&G, arsenic and SS cannot help a stream with as small a drainage as duck creek, and improving the quality of the discharge from the Acme fly ash disposal lagoon could only help the situation. Here is where I think the chemistry will help define things. Downstream from the fly ash lagoon is the Guif Oil Refinery which supposedly ceased discharging in June of 1985. However, local residents stated that it had recently been responsible for several oil spills. I suspect that the WTP sludge would probably trap this in the sediments and would present a water quality problem until it was dredged or flushed out of the river.

Duck Creek Data Summary - 1986

Wheeling Street (RM 3.0) - the beginning of Duck Creek and downstream of Acme Ash ponds.

Water quality at this location was very poor - D.O. content on 3 of 4 days was very low (0.2 - 0.5 mg/l) along with elevated NH₂ (5.7 and 6.5 mg/l) and NO₂ was high as 0.3 mg/l. There was detectable arsenic addition instream (52 - 89 ug/l) due to Acme Ash. NO₂ generally was low (<0.1 - 0.9 mg/l) because of the effluent domination and small urban drainage area. Phosphorus was <1 mg/l. All other metals, cyanide, phenolics and oil/grease were near or below detection limits.

York Street (RM 2.1)

This station was downstream of the Toledo WTP and there was a white precipitate covering substrates. The creek was culverted through large portion of the golf course. D.O. had markedly increased to 2.4 - 7.2 mg/l although a lowered pH of 9.6 was measured and NH₂ continued to elevated (0.4 - 1.2 mg/l) with one violation of WQS for WWH. NO₂, NO₂, phosphorus, cyanide, phenolics, Cd, Cr, Cu, Fe, Pb, Ni, Se, and Zn were similarly as low as upstream. A high TSS of 424 mg/l was collected on September 9. Arsenic declined to 5 - 18 ug/l. Fecal coliform was 51/100 ml. [1 am still trying to straighten out the anomalous hardness of 1030 mg/l].

D.O. content again declined on 3 of 4 days to 1.9 - 2.6 mg/l. pH was within the acceptable range. NO₂ again increased slightly at 0.4 - 2.0 mg/l, while NH₂ and NO₂ declined. All metals (except an insignificant violation for copper), phosphorus, cyanide, phenolics and oil/grease were as low as upstream.

Otter Creek Macroinvertebrate Data Summary

Otter Creek was sampled using qualitative methods only at Station 7.2 and both qualitatively and quantitatively a station 6.0, 4.0, 2.0 and 0.3. The sampling was conducted primarily to evaluate the impact of the LOF landfill, the Sun Oil Company refinery and the Fondessy Landfill.

Otter Creek at Station 7.2 was a small ditch-like stream. The stream supported a high density community of primarily pollution tolerant organisms. Fifteen taxa were collected with isopods predominant. The low diversity and absence of pollution sensitive organisms indicated moderate degradation was affecting the stream. Water quality was considered fair.

Severe biological degradation was present at all the quantitative sites where zero ICI values were scored. The stream was essentially devoid of benthic organisms at Station 6.0 after flowing under the LOF Landfill. The stream bottom was coated with a thick deposit of oily gray solids and muck, and a strong chemical odor was present. No organisms were collected from the artificial substrates and only one midge of the Chironmus riparius group and a surface breathing beetle were collected during qualitative sampling. Water quality was considered very poor and toxic.

Very poor water quality and toxic conditions continued at Station 4.0. The artificial substrates produced oligochaetes and one pollution tolerant midge. Oligochaetes and Chironmus riparius group midges were collected from the natural substrates.

Toxicity was apparently diminished slightly at Station 2.0. Thirteen taxa in moderate density were collected from the natural substrates with midges and damselflies predominant. Oligochaetes predominated on the artificial substrates from which three taxa were collected. A strong oily/septic odor was noted. due to the severe degradation from the LOF Landfill the impact of the Sun Oil Refinery and the Fondessy Landfill was not readily apparent. Water quality was considered very poor.

In addition to being grossly polluted by industrial wastes Station 0.3 was also impacted by a thermal discharge from the Sohio Refinery. This discharge has since been relocated to Maumee Bay. Quantitative sampling yielded seven taxa. Ten taxa were collected from the natural substrates. Water quality continued to be very poor.

Otter Creek Fish Community - 1986

The Otter Creek fish community was severely impacted by water quality and habitat problems at all sites sampled in 1986 (Emphasis on water quality problems). The upstream site at RM 7.2, upstream from E. Broadway Street which was supposed to serve as a control site, was a straight channelized agricultural ditch. This site definitely had the potential to become intermittent. Additionally, a railroad yard with its attendant problems, was situated in the upstream portion of the basin. All these factors contributed to the depauperate community found at this site. Also, well documented historical and current water quality problems from RM 6.4 downstream to the mouth would prevent re-invasion of fish into this segment regardless of any improvement in water quality at this site. Proceeding downstream no improvement in water quality as evidenced by improvements in the fish community was noted. The highest cumulative number of species was only three species, with several sites having either no fish or only 1 or 2 individuals collected during a sample

Physical evidence of chemical contamination was prevalent at all downstream sites. The Pickle Road site - RM 5.7, had a reddish brown flocculent precipitate in backwater areas. Hydrogen sulfide and other unidentified noxious smelling chemicals were released from the sediments when sampling this site. The only permitted entity upstream from this site was the closed LOF facility and its landfill. District personnel revealed a suspected problem with overflow from the landfill. The next site downstream, RM 4.0 - upstream from Wheeling Street, although having poor habitat should have supported more species and a higher density of fish than was collected. The Sun Oil - Toledo Refinery definitely was responsible for further degrad-ation of water quality at this site. The stream bank and sediments were oil soaked in several areas. Wading in these areas released from the sediment streamers and globules of dark black oil with a strong chemical smell different from that noticed at the Pickle Road site. Some areas (i.e. backwater areas with decomposing organic matter) also yielded H₂S when disturbed.

The sites at RM 2.1 and 0.5 were influenced by lake effect. Both sites had riparian vegetation and instream cover adequate to support a higher quality fish community than what was sampled. However, heated effluent (38 oC -- hot enough to cause an outboard engine to overheat and stall) from the Sohio Refinery was periodically forced upstream by seiches. This resulted in very few fish collected at these sites. Apparently the impact did not extend into the Maumee River since very little difference was distinguished between sites upstream and downstream from the mouth.

Otter Creek Data Summary - 1986

Otter Creek - Oakdale Street (RM 5.9) - downstream LOF landfill.

Water quality was severely degraded as evidenced by very low D.O. (0.2 - 0.5 mg/l) on 3 sample days, high pH 8.6 - 10.2, NH₂ (0.4 - 2.5 mg/l), phenolics (> 100 ug/l), As (>350 ug/l), Cd (1.0 ug/l), Cu (17 - 30 ug/l) and slight increase of Pb⁻(4 - 12 ug/l). Up to 0.3 mg/l of NO₂ were detected. Also on two days (August 20, September 10) maximum and minimum for D.O. content were less than 1 mg/l. This degradation was due to leachate from LOF infiltrating the Otter Creek culvert running through the landfill. I was told by Bruce Dunlavy (NWDO industrial WW) that the landfill has been capped and LOF hopes the leaching eventually stops. A fecal coliform count of 1500/100 ml may be due to on-site waste systems.

Otter Creek - Wheeling Street (RM 4.0)

Through almost two stream miles water quality slightly improved in D.O. content (2.4 - 4.2 mg/l) and pH (7.4 - 8.4); however, NH, of 0.7 - 1.7 still violated WQS for WWH. NO₂ continued as high as 0.4 mg/l. Phenolics declined to 25 - 49 ug/l and As'to approximately 20 ug/l. A Nickel of 120 ug/l was collected and 0.016 mg/l of cyanide was detected on two days (source?). Other metals (Cd, Cu, Pb) were no longer of particular note. Diurnal D.O. fluctuation on two days was between 1.5 - 2.5 mg/l.

Otter Creek - Millard Avenue (RM 2.1) adjacent to Fondessy Landfill

Water quality, although still degraded, had slightly improved (D.O. 2.7 - 5.8 mg/l) with the exception of a D.O. of O. mg/l, continued NH₃ of 0.9 - 2.4 mg/l), Cyanide (0.011 - 0.016 mg/l), phenolics of 20 - 34 ug/l, and a Copper of 15 ug/l. All other metals generally were present in low concentrations. Diurnal D.O. was more variable at 1.5 - 5 mg/l and 7 - 8 mg/l on August and September days. Lake effect could really slow the flow through this area.

Otter Creek - Unnamed port road (RM 0.5)

This station is located just upstream of the Sohio - Toledo discharge, and lake effect and winds drive effluent upstream at times (discharge now moved to Maumee Bay).

Some improvement had occurred but D.O. of 4.2 - 5.0 mg/l is lower than expected. Diurnal D.O. also could get very low (0.1 mg/l) with a narrow range (<1 mg/l). Temperature (35 - 38°C) was due to the thermal discharge. NH₂ to 0.1 -0.4 mg/l. Cyanide and phenolics also decreased. High copper (15 - 53 ug/l) and zinc (140 ug/l) were detected but As, Cd, Cr, Pb, Ni, and Se were in low concentration.

Cedar Creek Macroinvertebrate Data Summary

Cedar Creek was sampled at river mile 20.9. It is similar in size and geographic proximity to Otter Creek and Duck Creek and was considered a control station. When sampling was conducted the stream bottom was covered with filamentous algae and flow was nearly intermittent. Qualitative sampling produced 43 taxa with isopods predominant. Hetageniid and ephemeriid mayflies were common and a diverse assemblage of beetle taxa was collected from the natural substrates. Quantitative sampling yielded 34 taxa. An ICI value of 34 at this site was in the good range. Cedar Creek appeared to be enriched by agricultural runoff but the macroinvertebrate community at Station 20.9 indicated that the impact was not severe. Water quality was considered good and should be typical of what could be attained in both Otter Creek and Duck Creek.

Cedar Creek - Oregon Road (RM ?)

This background site was in an agricultural area and usually had low flow when sampled. Water quality was very good $(D.0. = 4.3 - 9.9 \text{ mg/l}, NO_2 = <0.1 - 5.0 \text{ mg/l}, NO_2 = <0.02 - 0.09 \text{ mg/l}, NH_2 = 0.1 - 0.4 \text{ mg/l}, phosphorus = <0.05 - 0.18 \text{ mg/l}, metals average less than detection) although a NO_2 of 5 mg/l, NH_2 of 0.4 mg/l, and NO_2 of 0.2 mg/l were collected (perhaps due to non-point sources and on-site problems). Diurnal D.O. fluctuation was quite large (2.5 - 15.6 mg/l).$

APPENDIX H

Toxic Pollutant Listing 1987 Clean Water Act, §307

APPENDIX H

[Section 307(a)(1) of the Clean Water Act of 1987 refers to the list of toxic pollutants published in Table 1 of Committee Print Number 95-30 of the House Committee of Public Works and Transportation. Following is the text of Table 1:]

```
SECTION 307
TABLE 1: TOXIC POLLUTANTS
```

Acenaphthene Acrolein Acrylonitrile Aldrin/Dieldrin Antimony and compounds* Arsenic and compounds Asbestos Benzene Benzidine Beryllium and compounds Cadmium and compounds Carbon tetrachloride Chlordane (technical mixture & metabolites) Chlorinated benzenes (other than dichlorobenzenes) Chlorinated ethanes (including 1,2 - dichloroethane, 1,1,1 and hexachloroethane) trichloroethane, Chloroalkyl ethers (chloromethyl, chloroethyl, and mixed ethers) Chlorinated naphthalene Chlorinated phenols (other than those listed elsewhere; includes trichlorophenois and chlorinated cresols) Chloroform 2-chlorophenol Chromium and compounds Copper and compounds Cyanides DDT and metabolites Dichlorobenzenes (u, 2-, 1, 3-, and 1, 4-dichlorobenzenes) Dichlorobenzidine Dichloroethylenes (1,1- and 1,2-dichloroethylene) 2,4-dimethylphenol Dinitrotoluene Diphenylhydrazine Endosulfan and metabolites Endrin and metabolites Ethylbenzene Flouranthene Haloethers (other than those listed elsewhere; includes chlorophenylphenyl ethers, bromophenylphenyl ether, bis(dischloroisopropyl) ether, bis-(chloroethoxy)methane and polychlorinated diphenyl ethers) Halomethanes (other than those listed elsewhere; includes methylene chloride, methylchloride, methylbromide, bromide, bromoform, dichlorobromomethane, trichlorofluoromethane, dichlorodifluoromethane)

APPENDIX H continued

Heptachlor and metabolites Hexachlorobutadiene Hexachlorocyclohexane (all isomers) Hexachlorocyclopentadiene Isophorone Lead and compounds Mercury and compounds Naphthalene Nickel and compounds Nitrobenzene Nitrophenols (including 2,4-dinitrophenol) dinitrocresol) Nitrosamines Pentachlorophenol Phenol Phthalate esters Polychlorinated biphenyls (PCSs) Polynuclear aromatic hydrocarbons (including benzathracenes, benzopyrenes, benzofluoranthene, chrysenes, dibenzathracenes, and indenopyrenes) Selenium and compounds Silver and compounds 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Tetrachloroethylene Thallium and compounds Toluene Toxaphene Trichloroethylene Vinyl Chloride Zinc and compounds

APPENDIX I

1

NPDES Permit Violations, 1987-1988

APPENDIX I NPDES PERMIT VIOLATIONS In the Lower Maumee RAP Area 1987 - 1988

The following Appendix lists violations of NPDES Permits in the RAP Area for 1987 and most of 1988. The listing is grouped by effluent parameter for each outfall of each NPDES Permit.

There are five columns of violations data: the Average Quantity, the Maximum Quantity, the Minimum Concentration, the Average Concentration, and the Maximum Concentration. Under each of these there may or may not be a limitation set in the NPDES permit, depending on the parameter. For example, for pH both maximum and minimum "concentration" limitations are normally set. There may not be a limit based on the average, and "quantity" is not applicable. For BOD₅, there are normally maximum concentration and quantity limits, while for Dissolved Oxygen, the limit is based on minimum concentration.

These data are included as violations because the limit was exceeded in <u>at least</u> one column, <u>but not</u> <u>necessarily in all five</u>. Where there are no applicable effluent limitations, the space is left blank. Where no data was reported, "0" is printed.

The units of the effluent data are shown. Total quantities are in kg/day, and most concentrations are in mg/l or μ g/l. "SU" stands for "Standard Units." This abbreviation is used for pH (refers to the standard pH scale of 0 to 14), and for bacteria, which are measured in organisms per 100 ml of water. Very high bacterial counts are often reported as "TNTC," or "too numerous to count." Such cases are given here as 1,000,000. Water temperatures are given as ° Fahrenheit or ° Celsius.

As an example of how to read the table:

NPDES Permit	DATE & NAME OF OUTFALL	FACILITY/OWNER	NAME OF PARAMETER VIC	DLATED AVG QU/ in kg/o	ANTITY MAX QUANTI day īn kg/day	TY MIN CONC	AVG CONC	MAX CONC	TALLY
NUMBER	NUMBER			Lim/Mea	asured Lim/Measur	ed Lim/Measured	d Lim/Measur	ed Lim/Meas	ured
	-Discharge Date	│──Name of │ Discharger ↓	F——Effluent Parameter	Avg Quantity Limit, kg/day 	Max Quantity Limit, kg/day 	<u>Concentration</u> Minimum	<u>n Limits in</u> —Average	<u>µg/l</u> Maximum	Number of Violations
21G00003 † NPDES Number	001	ining & Marketing Co. Number	Phenolics, Total	L 2 ► 1 Avg Quantity Discharged	└─→ 4 ┌─→ 5 Max Quantity Discharged	0 μg/l∢-	-≻91 µg/l Average	→200 µg/l →497 µg/l Maximum	

In this example, violations have occurred in both the maximum quantity and the maximum concentration.

* Subsubtotal * = Number of violations of this specific effluent parameter at this outfall. ** Subtotal ** = Total number of violations of all parameters at all outfalls for this permit. *** Total *** = Grand total of violations for all permits.

NPDES PERMIT NUMBER	DATE & Outfall Number	NAME OF FACILI	TY/OWNER	NAME OF PARAMETE	R VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
* VIOLA	IONS FOR P	NPDES: 21B00000 ARAMETER: FECAL Toledo Edison,		Fecal Coliform		0	C	0 SU	1000 SU 5000 SU	2000 SU 5000 SU	1
	ototal * IONS FOR P 04/30/87 003_		Bayshore Plant Bayshore Plant	рН РН	·	0	0	6 SU 6 SU 6 SU 6 SU	0 SU	9 SU 10 SU 9 SU 9 SU 9 SU	1 1 1
21800000 * Subsub ** Subto	003 ototal * otal **		Bayshore Plant	рH		0	0	6 SU 6 SU	O SU	9 SU 10 SU	1 3 4
	TIONS FOR P 10/31/87 001 12/31/87 001 02/29/88 001 05/31/88 001 06/30/88 001	NPDES: 2IB00001 ARAMETER: CHLOR Toledo Edison, Toledo Edison, Toledo Edison, Toledo Edison, Toledo Edison,	ACME Plant ACME Plant ACME Plant	JAL Chlorine, Total I Chlorine, Total I Chlorine, Total I Chlorine, Total I Chlorine, Total I	Residual Residual Residual	8 5 8 10 8 20 8 20 8 2 8 52	23 45 23 25 23 91 23 29 23 91	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	0 mg/l 0 mg/l 0 mg/i 0 mg/i 0 mg/i	1 1 1 1
* VIOLA 2180000 2180000 2180000 2180000 2180000	06/30/87 010 09/30/87 010 11/30/87 010 12/31/87 010	ARAMETER: SOLID Toledo Edison, Toledo Edison, Toledo Edison, Toledo Edison, Toledo Edison,	ACME Plant ACME Plant ACME Plant	ED Solids, Total Sum Solids, Total Sum Solids, Total Sum Solids, Total Sum Solids, Total Sum	spended spended spended spended	0 0 0 0	466 579 1022 534 568	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	O mg/l O mg/l O mg/l O mg/i O mg/i	5 1 1 1 1
2180000 2180000 2180000 2180000 2180000 2180000	010 03/31/88 010 04/30/88 010 05/31/88 010	Toledo Edison, Toledo Edison, Toledo Edison, Toledo Edison, Toledo Edison,	ACME Plant ACME Plant ACME Plant	Solids, Total Su Solids, Total Su Solids, Total Su Solids, Total Su Solids, Total Su	spended spended spended	0 0 0	806 659 806 500	0 mg/l 0 mg/l 0 mg/l 0 mg/l	0 mg/l 0 mg/l 0 mg/l 0 mg/l	0 mg/l 0 mg/l 0 mg/l 0 mg/l	1 1 1 1

Page No. I-2

NPDES PERMIT VIOLATIONS, 1987-8

NPDES DATE & NAME OF FACILITY/OWNER PERMIT OUTFALL NUMBER NUMBER	NAME OF PARAMETER VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
010 21B00001 07/31/88 Toledo Edison, ACME Plant 010 21B00001 01/31/87 Toledo Edison, ACME Plant 011 21B00001 02/28/87 Toledo Edison, ACME Plant 011 21B00001 03/31/87 Toledo Edison, ACME Plant 011 21B00001 05/31/87 Toledo Edison, ACME Plant 011 21B00001 05/31/87 Toledo Edison, ACME Plant 011 21B00001 07/31/87 Toledo Edison, ACME Plant 011 21B00001 07/31/87 Toledo Edison, ACME Plant 011 21B00001 08/31/87 Toledo Edison, ACME Plant 011 21B00001 09/30/87 Toledo Edison, ACME Plant 011 21B0001 09/30/87 Toledo Edison, ACME Plant 011 21B0001 09/30/87 Toledo Edison Plant 011 21B0001 09/30/87 Toledo Edison Plant 010 010 010 010 010 010 010 01	Solids, Total Suspended Solids, Total Suspended		375 318 749 511 488 397 261 534 522 318 954 693	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	0 mg/l 0 mg/l	0 mg/l 0 mg/l	1 1 1 1 1 1 1 1 1
** Subtotal ** ** VIOLATIONS FOR NPDES: 21D00011							21 26
* VIOLATIONS FOR PARAMETER: PH 2ID00011 05/31/87 Koppers Company, Inc. 001 2ID00011 06/30/87 Koppers Company, Inc. 001 * Subsubtotal *	pH H	0	0 0	0 SU 0 SU	7 SU 6 SU 7 SU 6 SU	9 SU 7 SU 9 SU 7 SU	1 1 2
<pre>* VIOLATIONS FOR PARAMETER: TEMPERATURE, FAHRENHI 2ID00011 04/30/87 Koppers Company, Inc.</pre>	Ell Temperature, Fahrenheit	0	0	0 °F	0 °F	15 °F 16 °F	1 1 3
<pre>** VIOLATIONS FOR NPDES: 2IF00016 * VIOLATIONS FOR PARAMETER: TEMPERATURE, CELSIUS 2IF00016 01/31/88 E. I. DuPont Denemours & Co. 001</pre>	Temperature, Celsius	0	0	0 °C	0 °C	20 °C 55 °C	1
21F00016 02/29/88 E. I. DuPont Denemours & Co. 001 21F00016 03/31/88 E. I. DuPont Denemours & Co. 001 21F00016 04/30/88 E. I. DuPont Denemours & Co. 001 21F00016 06/30/88 E. I. DuPont Denemours & Co. 001	Temperature, Celsius Temperature, Celsius Temperature, Celsius Temperature, Celsius	0 0 0	0	0°C 0°C 0°C 0°C	0°0 0°0 0°0 0°0	55 °C 20 °C 56 °C 20 °C 20 °C 20 °C 20 °C 21 °C 21 °C 23 °C	1 1 1 1

Page No. I-3

NPDES PERMIT VIOLATIONS, 1987-8

NPDES DATE & NAME OF FACILITY/OWNER PERMIT OUTFALL NUMBER NUMBER	NAME OF PARAMETER VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
21F00016 07/31/88 E. I. DuPont Denemours & Co. 001 21F00016 01/31/88 E. I. DuPont Denemours & Co. 002 21F00016 02/29/88 E. I. DuPont Denemours & Co. 002 21F00016 07/31/88 E. I. DuPont Denemours & Co. 002 * Subsubtotal *	Temperature, Celsius Temperature, Celsius Temperature, Celsius Temperature, Celsius	0 0 0	0 0 0	0°C 0°C 0°C	0°C 0°C 0°C 0°C	20 °C 22 °C 20 °C 56 °C 20 °C 20 °C 20 °C 20 °C 25 °C	1 1 1 9 9
<pre>** VIOLATIONS FOR NPDES: 2IF00017 * VIOLATIONS FOR PARAMETER: TEMPERATURE, CELSIUS 2IF00017 08/31/88 E. I. DuPont Denemours & Co.</pre>	Temperature, Celsius	0	0	0°C	15 °C 13 °C	20 °C 22 °C	1 1 1
<pre>* VIOLATIONS FOR PARAMETER: BOD 5 2IG00003 05/31/87 Sun Refining & Marketing Co. 001 2IG00003 06/30/87 Sun Refining & Marketing Co. 001 2IG00003 03/31/88 Sun Refining & Marketing Co. 001 * Subsubtotal *</pre>	80D 5 80D 5 80D 5	305 291 305 357 305 564	568 730 568 1172 568 945	0 mg/l 0 mg/l 0 mg/l	0 mg/l 0 mg/l 0 mg/l	0 mg/l 0 mg/l 0 mg/l	1 1 1 3
<pre>* VIOLATIONS FOR PARAMETER: COD 2IG00003 06/30/87 Sun Refining & Marketing Co. 001 2IG00003 03/31/88 Sun Refining & Marketing Co. 001 * Subsubtotal *</pre>	COD	1820 1940 1820 2280	3410 7336 3410 6225	0 mg/l 0 mg/l	0 mg/l 0 mg/l	0 mg/l 0 mg/l	1 1 2
* VIOLATIONS FOR PARAMETER: OIL AND GREASE 21G00003 02/29/88 Sun Refining & Marketing Co. 001 * Subsubtotal *	Oil and Grease	146 62	273 189	0 mg/l	10 mg/l 7 mg/l	20 mg/l 22 mg/l	1
 * VIOLATIONS FOR PARAMETER: OXYGEN, DISSOLVED 21G00003 04/30/87 Sun Refining & Marketing Co. 001 21G00003 05/31/87 Sun Refining & Marketing Co. 001 21G00003 06/30/87 Sun Refining & Marketing Co. 001 21G00003 07/31/87 Sun Refining & Marketing Co. 001 21G00003 08/31/87 Sun Refining & Marketing Co. 001 	Oxygen, Dissolved Oxygen, Dissolved Oxygen, Dissolved Oxygen, Dissolved Oxygen, Dissolved	0 0 0	0 0 0	4 mg/l 4 mg/l 4 mg/l 4 mg/l 4 mg/l 4 mg/l 4 mg/l 4 mg/l 4 mg/l	5 mg/l 7 mg/l 5 mg/l 5 mg/l 5 mg/l 5 mg/l 5 mg/l 5 mg/l	O mg/t O mg/t O mg/t O mg/t	1 1 1 1

Page No. 1-4

NPDES PERMIT VIOLATIONS, 1987-8

 \frown

NUMBER NUMBER	NPDES PERMIT NUMBER	DATE & OUTFALL NUMBER	NAME OF	FACILITY/OWNER
---------------	---------------------------	-----------------------------	---------	----------------

	MAX QUANTITY	MIN CONC	AVG CONC	MAX CONC	TALLY
in kg/day lim/Measured	in kg/day Lim/Measured	lim/Measured	tim/Measured	Lim/Measured	

j

001		0	0	4 mg/l	6 mg/l	0 mg/l	
21G00003 09/30/87 Sun Refining & Marketing Co. 001	Oxygen, Dissolved (0	0	4 mg/l 4 mg/l	5 mg/l 7 mg/l	0 mg/l	1
2IG00003 03/31/88 Sun Refining & Marketing Co.	Oxygen, Dissolved	0	0	4 mg/l 1 mg/l	5 mg/l 0 mg/l	0 mg/l	1
* Subsubtotal *		·	·				7
* WARLATIONS FOR RADAWETER, DU							,
* VIOLATIONS FOR PARAMETER: PH 21G00003 03/31/88 Sun Refining & Marketing Co.	pH	•	•	6 SU 7 SU		9 SU	1
001 * Subsubtotal *		0	0	7 SU	0 SU	10 SU	
							1
* VIOLATIONS FOR PARAMETER: PHENOLICS, TOTAL 2IG00003 02/28/87 Sun Refining & Marketing Co.	Phenolics, Total	2	4		100 µg/l	200 µg/l	1
001 21G00003 06/30/87 Sun Refining & Marketing Co.	Phenolics, Total	1	5	0 μg/l	91 μg/l 100 μg/l	497 μg/l 200 μg/l	1
001		2	13	0 μg/l	226 <u>u</u> a/l	1320 μg/l	1
21G00003 10/31/87 Sun Refining & Marketing Co.	Phenolics, Total	1	3	0 µg/l	100 μg/l 82 μg/l	200 μg/l 330 μg/l	
2IG00003 12/31/87 Sun Refining & Marketing Co.	Phenolics, Total	2	4	0 µg/l	100 μg/l 82 μg/l	200 μg/l 378 μg/l	1
2IG00003 01/31/88 Sun Refining & Marketing Co. 001	Phenolics, Total	2	43	0 μg/l	100 µg/l 95 µg/l	200 µg/l 262 µg/l	1
2IG00003 02/28/88 Sun Refining & Marketing Co.	Phenolics, Total	2	4	0 µg/l	100 μg/l 127 μg/l	200 μg/l 476 μg/l	1
2IG00003 03/31/88 Sun Refining & Marketing Co.	Phenolics, Total	2	4 41		100 µg/l	200 μg/l 4495 μg/l	1
2IG00003 05/31/88 Sun Refining & Marketing Co.	Phenolics, Total	2	4	0 μg/l	877 μg/l 100 μg/l	200 µg/l	1
2IG00003 06/30/88 Sun Refining & Marketing Co.	Phenolics, Total	2	4	0 μg/l	90 μg/l 100 μg/l	401 μg/l 200 μg/l	1
001 * Subsubtotal *		U	3	0 μg/l	117 μg/l	821 μg/l	_
		•					9
* VIOLATIONS FOR PARAMETER: SULFIDE, TOTAL 21G00003 03/31/88 Sun Refining & Marketing Co.	Sulfide, Total	3	6				1
001 * Subsubtotal *		3	8	0 mg/l	0 mg/l	0 mg/l	•
							1
** Subtotal **							24
** VIOLATIONS FOR NPDES: 21G00007							
* VIOLATIONS FOR PARAMETER: OXYGEN, DISSOLVED							
21G00007 04/30/87 Standard Oil Co., Ohio 002	Oxygen, Dissolved	Đ	0	4 mg∕l 6 mg∕l	5 mg/l 7 mg/l	0 mg/l	1
2IG00007 05/31/87 Standard Oil Co., Ohio	Oxygen, Dissolved	ů	0	4 mg/l 6 mg/l	5 mg/l 7 mg/l	0 mg/l	1
21G00007 06/30/87 Standard Oil Co., Ohio	Oxygen, Dissolved	·	-	4 mg/l	5 mg/l		1
2IG00007 07/31/87 Standard Oil Co., Ohio	Oxygen, Dissolved	0	0	6 mg/l 4 mg/l	7 mg/l 5 mg/l	0 mg/l	1
002 21G00007 08/31/87 Standard Oil Co., Ohio	Oxygen, Dissolved	0	0	6 mg/l 4 mg/l	6 mg/l 5 mg/l	0 mg/l	1
002 21600007 09/30/87 Standard Oil Co., Chio	Oxygen, Dissolved	0	0	6 mg/l 4 mg/l	6 mg/l 5 mg/l	0 mg/l	1
					~		
· · · · -							

NAME OF PARAMETER VIOLATED

NPDES PERMIT NUMBER	DATE & OUTFALL NUMBER	NAME OF FACI	ILITY/OWNER	NAME OF	PARAMETER VIOLATED	AVG QUANTITY in kg/day Lim/Measured	MAX QUANTITY in kg/day Lim/Measured	MIN CONC Lim/Measured	AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
21G00007 * Subsubt ** Subtot	002 otal *	Standard Oil	l Co., Ohio	Oxygen,	Dissolved	0 0	0 0	6 mg/l 4 mg/l 4 mg/l	6 mg/l 5 mg/l 0 mg/l	0 mg/l 0 mg/l	1 7
* VIOLATI	ONS FOR P. 09/30/87 001 04/30/88 001 05/31/88 001	NPDES: 2IHOOC ARAMETER: BOD General Mill General Mill General Mill)5 s, Inc. ls, Inc.	BOD 5 BOD 5 BOD 5		0 0 0	0 0 0	0 mg/l 0 mg/l 0 mg/l	56 mg/l 25 mg/l 70 mg/l	45 mg/l 56 mg/l 45 mg/l 48 mg/l 45 mg/l 110 mg/l	7 1 1 1 3
21H00093 21H00093 21H00093 21H00093 * Subsubt	05/31/87 001 09/30/87 001 10/31/87 001 05/31/88 001 otal *	ARAMETER: PH General Mill General Mill General Mill General Mill	s, Inc. Is, Inc.	рН рН рН рН		0 0 0	0 0 0	6 SU 6 SU 5 SU 6 SU 6 SU 6 SU 6 SU 6 SU	0 SU 0 SU 0 SU 0 SU	9 SU 6 SU 9 SU 5 SU 9 SU 9 SU 9 SU 7 SU	1 1 1 1 4
21H00093 21H00093 21H00093 * Subsubt ** Subsubt	05/31/87 001 02/29/88 001 04/30/88 001 total * al **	General Mill General Mill General Mill NPDES: 2IJ000	s, inc. s, inc. ls, inc.	Solids, Solids,	Total Suspended Total Suspended Total Suspended	0 0 0	0 0 0	0 mg/l 0 mg/l 0 mg/l	0 mg/l 35 mg/l 33 mg/l	45 mg/l 56 mg/l 45 mg/l 67 mg/l 45 mg/l 49 mg/l	1 1 1 3 10
	06/30/88 001 otal *	ARAMETER: PH The France S	Stone Company	рĦ		0	0	7 SU 6 SU	0 SU	9 SU 6 SU	1 1 1

Page No. I-6

NPDES PERMIT VIOLATIONS, 1987-8

- · ·

 \sim

	in some so				· •• •••		**			·	
NPDES	DATE &	NAME OF	FACILITY/OWNER	NAME OF PARAMETER	VIOLATED		MAX QUANTITY	MIN CONC	AVG CONC	MAX CONC	TALLY
PERMIT NUMBER	OUTFALL NUMBER					in kg/day Lim/Measured	in kg/day Lim/Measured	Lim/Measured	Lim/Measured	Lim/Measured	
** VIOLA * VIOLAT	TIONS FOR IONS FOR P	NPDES: 21 ARAMETER:	J00052 PH						• • •		
21J00052	03/00/00 001	Stoneco		pH		0	0	0 SU	0 SU	O SU	1
* Subsub						v	v	0.90	0 00	0.00	ſ
** Subto	tal **		·								1
** VIOLA	TIONS FOR	NPDES: 21	N00013								•
			AMMONIA NITROGEN Enterprises Inc.	Ammonia Nitrogen		0	1		3 mg/l	5 mg/l	1
2IN00013	001		Enterprises Inc.	Ammonia Nitrogen		0 0	0 1	0 mg/l	6 mg/l 3 mg/l	6 mg/l 5_mg/l	1
2IN00013	001 07/31/88		Enterprises Inc.	Ammonia Nitrogen		0	0 1	0 mg/l	15 mg/l 3_mg/l	15 mg/l 5_mg/l	1
* Subsub	.001 total *					0	0	0 mg/l	13 mg/l	15 mg/l	3
	IONS FOR P	ADAMETED.	DU								-
			Enterprises Inc.	рН		0	0	7 SU 9 SU	0 SU	9 SU 9 SU	1
2IN00013		Fondessy	Enterprises Inc.	pH		0	0	7 SU 9 SU	0 SU	9 SU 9 SU	1
* Subsub						-				•	2
** Subto	tal **										5
** VIOLA	TIONS FOR	NPDES: 21	N00069						• .		
			CHLORINE, TOTAL RESIDU		a i dua l				0 mg/l	1 mg/l	1
	601	•	•	Chlorine, Total R		0	0	5 mg/l	0 mg/l	5 mg/l 1 mg/l	1
21N00069 * Subsub	601		arbonic Corp.	Chlorine, Total R	estudat	0	0	0 mg/l	0 mg/l 4 mg/l	4 mg/l	
- Subsub	tutat "								T = T		2
	IONS FOR P. 06/30/87		PH arbonic Corp.	pH				7 SU		9 SU	1
* Subsub	001					0	0	6 SU	0 SU	6 SU 👘	
										- :	1
			SOLIDS, TOTAL SUSPENDE arbonic Corp.	D Solids, Total Sus	pended					15 mg/l	1
21N00069	001 06/30/88		arbonic Corp.	Solids, Total Sus	·	0	0	0 mg/l	0 mg/l	16 mg/l 15 mg/l	1
* Subsub	001 total *	-		-		0	0	0 mg/l	0 mg/l	41 mg/l	-
** Subto											2
											5

ъ.

NPDES	DATE &	NAME	OF	FACILITY/OWNER
PERMIT	OUTFALL			
NUMBER	NUMBER			

NAME OF PARAMETER VIOLATED

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC TALLY in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured

** VIOLATIONS FOR NPDES: 21N00079

* VIOLATIONS FOR PARAMETER: AMMONIA NITROGEN	5					-	
21N00079 01/31/87 King Road Sanitary & Landfill		0	0	0 mg/l	3 mg/l 107 mg/l	5 mg/l 138 mg/l	1
21N00079 02/28/87 King Road Sanitary & Landfill 001		0	0	0 mg/l	3 mg/l 81 mg/l	5 mg/[120 mg/l	1
2IN00079 03/31/87 King Road Sanitary & Landfill 001	Ammonia Nitrogen	Û	n	0 mg/l	3 mg/l 120 mg/l	5 mg/l 155 mg/l	1
21N00079 04/30/87 King Road Sanitary & Landfill	Ammonia Nitrogen	0	ů Ú		3 mg/[5 mg/l	1
2IN00079 05/31/87 King Road Sanitary & Landfill	Ammonia Nitrogen	0	0	0 mg/l	151 mg/l 3 mg/l	158 mg/l 5_mg/l	1
2IN00079 06/30/87 King Road Sanitary & Landfill	Ammonia Nitrogen	U	U	0 mg/l	111 mg/l 3 mg/l	137 mg/l 5 mg/l	1
2IN00079 07/31/87 King Road Sanitary & Landfill	Ammonia Nitrogen	U	0	0 mg/l	103 mg/l 3 mg/l	113 mg/l 5 mg/l	1
2IN00079 08/31/87 King Road Sanitary & Landfill	Ammonia Nitrogen	0	0	0 mg/l	73 mg/l 3 mg/l	87 mg/l 5 mg/l	1
001 21N00079 09/30/87 King Road Sanitary & Landfill		0	0	0 mg/l	86 mg/l 3 mg/l	102 mg/l 5 mg/l	1
001 2IN00079 10/31/87 King Road Sanitary & Landfill	-	0	0	0 mg/l	<u>107 mg/l</u>	115 mg/l	
001 2IN00079 11/30/87 King Road Sanitary & Landfill	-	0	0	0 mg/l	3 mg/l 125 mg/l	5 mg/l .163 mg/l	1
001		0	0	0 mg/l	3 mg/l 115 mg/l	5 mg/l 162 mg/l	1
2IN00079 12/31/87 King Road Sanitary & Landfill 001	-	0	0	0 mg/l	3 mg/l 61 mg/l	5 mg/l 80 mg/l	1
2IN00079 01/31/88 King Road Sanitary & Landfill 001	Ammonia Nitrogen	0	0	0 mg/l	3 mg/l 128 mg/l	5 mg/l 128 mg/l	1
21N00079 03/31/88 King Road Sanitary & Landfill 001	Ammonia Nitrogen	0	0	0 mg/l	3 mg/l 63 mg/l	5 mg/l 83 mg/l	1
2IN00079 04/30/88 King Road Sanitary & Landfill	Ammonia Nitrogen	0	0	0 mg/l	3 mg/l 67 mg/l	5 mg/l 86 mg/l	1
2IN00079 05/18/88 King Road Sanitary & Landfill	Ammonia Nitrogen	õ	ů O		3_mg/l	5 mg/l	1
2IN00079 06/30/88 King Road Sanitary & Landfill	Ammonia Nitrogen	0	-	0 mg/l	62 mg/l 3 mg/l	71 mg/l 5 mg/l	1
* Subsubtotal *		0	0	0 mg/l	78 mg/l	123 mg/l	
							17
* VIOLATIONS FOR PARAMETER: BOD 5 2IN00079 01/31/87 King Road Sanitary & Landfill	BOD 5				10 mg/l	20 mg/l	1
001 2IN00079 02/28/87 King Road Sanitary & Landfill	BOD 5	0	0	0 mg/l	73 mg/l 10 mg/l	80 mg/l 20 mg/l	· 1
001 2IN00079 03/31/87 King Road Sanitary & Landfill		0	0	0 mg/l	14 mg/L	22 mg/l	•
001		0	0	0 mg/l	10 mg/l 34 mg/l	20 mg/l 40 mg/l	1
21N00079 04/30/87 King Road Sanitary & Landfill		0	0	0 mg/l	10 mg/l 60 mg/l	20 mg/l 83 mg/l	1
2IN00079 05/31/87 King Road Sanitary & Landfill 001	BOD 5	0	0	0 mg/l	10 mg/l 63 mg/l	20 mg/l 79 mg/l	1
2IN00079 06/30/87 King Road Sanitary & Landfill 001	BOD 5	0	Û	0 mg/l	10 mg/l 71 mg/l	20 mg/l 84 mg/l	1
2IN00079 07/31/87 King Road Sanitary & Landfill	BOD 5	- N	ů O	0 mg/l	10 mg/l 62 mg/l	20 mg/l 66 mg/l	1
2IN00079 08/31/87 King Road Sanitary & Landfill	BOD 5	0	0		10 mg/l	20 mg/l	1
21N00079 09/30/87 King Road Sanitary & Landfill	BOD 5	Ų	ų	0 mg/l	58 mg/l 10 mg/l	68 mg/l 20 mg/l	1

Page No. 1-8

NPDES PERMIT VIOLATIONS, 1987-8

 \mathbf{i}

NPDES DATE & NAME OF FACILITY/OWNER PERMIT OUTFALL NUMBER NUMBER

1 Summer

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC TALLY in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured

001 2IN00079 10/31/87 King Road Sanitary & Landfill	BOD 5	0	0	0 mg/l	67 mg/l 10 mg/l	85 mg/l 20 mg/l	1
001		0	0	0 mg/l	64 mg/l	68 mg/l	
2IN00079 11/30/87 King Road Sanitary & Landfill	BOD 5	0	0	0 mg/l	10 mg/l 44 mg/l	20 mg/l 52 mg/l	1
2IN00079 12/31/87 King Road Sanitary & Landfill 001	BOD 5	0	0	0 mg/l	10 mg/l 60 mg/l	20 mg/l 73 mg/l	1
2IN00079 01/31/88 King Road Sanitary & Landfill 001	BOD 5	0	0	0 mg/l	10 mg/l 51 mg/l	20 mg/l 51 mg/l	1
2IN00079 03/31/88 King Road Sanitary & Landfill	80D 5	0	0	0 mg/l	10 mg/l 56 mg/l	20 mg/l 73 mg/l	1
2IN00079 04/30/88 King Road Sanitary & Landfill	BOD 5	0	0	0 mg/l	10 mg/l 25 mg/l	20 mg/l 38 mg/l	1
21N00079 05/31/88 King Road Sanitary & Landfill	BOD 5	0	Û	-	10 mg/l	20 mg/l	1
2IN00079 06/30/88 King Road Sanitary & Landfill	80D 5	•	•	0 mg/l	20 mg/l 10 mg/l	29 mg/l 20 mg/l	1
* Subsubtotal *		0	0	0 mg/l	33 mg/l	47 mg/l	
							17
* VIOLATIONS FOR PARAMETER: SOLIDS, TOTAL SUSPEND 21N00079 02/28/87 King Road Sanitary & Landfill					30 mg/l	45 mg/l	1
001 2IN00079 04/30/87 King Road Sanitary & Landfill		0	0	0 mg/l	20 mg/l 30 mg/l	66 mg/l 45 mg/l	1
001 2IN00079 05/31/87 King Road Sanitary & Landfill	· · · · · · · · · · · · · · · · · · ·	0	0	0 mg∕l	30 mg/l 30 mg/l	78 mg/l 45 mg/l	•
001		0	0	0 mg/l	25 mg/l	57 mg/l	1 4
001		0	0	0 mg/l	30 mg/l 77 mg/l	45 mg/l 106 mg/l	1
2IN00079 08/31/87 King Road Sanitary & Landfill		0	0	0 mg/l	30 mg/l 56 mg/l	45 mg/l 97 mg/l	1
2IN00079 09/30/87 King Road Sanitary & Landfill 001	Solids, Total Suspended	0	0	0 mg/l	30 mg/l 17 mg/l	45 mg/l 46 mg/l	1
2IN00079 11/30/87 King Road Sanitary & Landfill 001	Solids, Total Suspended	0	0	0 mg/l	30 mg/l 68 mg/l	45 mg/l 188 mg/l	1
2IN00079 03/31/88 King Road Sanitary & Landfill 001	Solids, Total Suspended	0	0	0 mg/l	30 mg/l 20 mg/l	45 mg/l 70 mg/l	1
* Subsubtotal *		·	Ū	V 1037 V			8
** Subtotal **							-
							42
** VIOLATIONS FOR NPDES: 21000001							
* VIOLATIONS FOR PARAMETER: COD 21000001 01/31/87 Teledyne Industries	COD	14	26		30 mg/l	100 mg/l	1
001 21000001 07/31/87 Teledyne Industries	COD	9 14	16 26	0 mg/l	51 mg/l 30 mg/l	105 mg/l 100 mg/l	1
001		11	24	0 mg∕l	43 mg/l	76 mg/l	I I
* Subsubtotal *							2
* VIOLATIONS FOR PARAMETER: OIL AND GREASE, TOTAL					45	n o <i>i</i> i	
21000001 06/30/88 Teledyne Industries 001	Oil and Grease, Total	0	0	0 mg/l	15 mg/l 18 mg/l	20 mg/l 45 mg/l	1
* Subsubtotal *							1
** Subtotai **							-

.....

NAME OF PARAMETER VIOLATED

** VIOLATIONS FOR NPDES: 21000012							3
* VIOLATIONS FOR PARAMETER: OIL AND GREASE, TOTAL							
001	nd Grease, Total	0	0	0 mg/l	0 mg/l	10 mg/l 18 mg/l	1
21000012 04/30/87 Diversitech General Inc. Oil an	nd Grease, Total	0	0	0 mg/l	0 mg/l	10 mg/l 59 mg/l	1
21000012 05/31/87 Diversitech General Inc. Oil an	nd Grease, Total	ů O	0	-	- · · ·	10 mg/l	. 1
	nd Grease, Total	-	-	0 mg/l	0 mg/l	20 mg/l 10 mg/l	1
21Q00012 04/30/87 Diversitech General Inc. Oil a	nd Grease, Total	0	0	0 mg/l	0 mg/l	11 mg/l 10 mg/l	1
2IQ00012 08/31/87 Diversitech General Inc. Oil a	nd Grease, Total	0	0	0 mg/l	0 mg/l	14 mg/l 10 mg/l	1
002	nd Grease, Total	0	0	0 mg/l	0 mg/l	12 mg/l 10 mg/l	1
002	nd Grease, Total	0	0	0 mg/l	0 mg/L	16 mg/l	1
002 * Subsubtotal *		0	0	0 mg/l	0 mg/l	10 mg/l 17 mg/l	1
* Subsubtotal *					:		8
* VIOLATIONS FOR PARAMETER: PH							
21000012 02/28/87 Diversitech General Inc. pH		0	0	7 SU 6 SU	0 SU	9 SU 6 SU	1
* Subsubtotal *		÷	·	0.00		0.00	1
** Subtotal **					: · ·		•
** VIOLATIONS FOR NPDES: 21800008	·				· · · · · · · · · · · · · · · · · · ·		9
* VIOLATIONS FOR PARAMETER: CHLORINE, TOTAL RESIDUAL					1		
21S00008 06/30/87 Reichert Stamping Company Chlori 002	ine, Total Residual	0	0	10 mg/l	2 mg/l 0 mg/l	3 mg/l 10 mg/l	1
	ine, Total Residual	-	·		2 mg/l	3 mg/l	1
* Subsubtotal *		0	0	3 mg/l	0 mg/l	3 mg/l	_
					· · · ·		2
* VIOLATIONS FOR PARAMETER: SOLIDS, TOTAL SUSPENDED 21S00008 02/29/88 Reichert Stamping Company Solids	s, Total Suspended				30 mg/l	45 mg/l	1
002 * Subsubtotal *		0	0	0 mg/l	35 mg/l	35 mg/l	•
** Subtotal **							1
Subtotat					1		3
** VIOLATIONS FOR NPDES: 21T00002							
* VIOLATIONS FOR PARAMETER: OIL AND GREASE					-		
	nd Grease	0	0	0 mg/l	0 mg/l	10 mg/l 15 mg/l	1
	nd Grease	0	0			. 10 mg/l	1
* Subsubtotal *		U	U	0 mg/l	0 mg/l	14 mg/l	

NAME OF PARAMETER VIOLATED

* Subsubtotal *

NPDES

PERMIT

NUMBER

Page No. 1-10

NPDES PERMIT VIOLATIONS, 1987-8

2

DATE & NAME OF FACILITY/OWNER OUTFALL NUMBER

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured

TALLY

NPDES DATE & NAME OF FACILITY/OWNER PERMIT OUTFALL NUMBER NUMBER

NAME OF PARAMETER VIOLATED

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC TALLY in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured

* VIOLATIONS FOR PARAMETER: PH 2IT00002 12/31/87 The Chessie System	pH			7 SU		9 SU	ĩ
002 21T00002 12/31/87 The Chessie System	pH	0	0	6 SU 7 SU	0 SU	7 SU 9 SU	•
004 * Subsubtotal *	þ.	0	Ó	6 SU -	0 SU	7 SU	ľ
							2
** Subtotal **					· · · · ·		4
** VIOLATIONS FOR NPDES: 21T00013							
* VIOLATIONS FOR PARAMETER: OIL AND GREASE, TOTAL 21T00013 05/31/88 The Chessie System	Oil and Grease, Total					10 mg/l	1
003 * Subsubtotal *		0	0	0 mg/l	0 mg/l	12 mg/l	•
Subsubcoldi							1
* VIOLATIONS FOR PARAMETER: PH 21T00013 12/31/87 The Chessie System				7 SU		9 SU	4
003	pH	0	0	6 SU	0 SU	6 SU	1
2IT00013 12/31/87 The Chessie System	РH	0	0	7 SU 6 SU	0 SU	9 SU 6 SU	1
2IT00013 05/31/88 The Chessie System 004	рН	0	0	7 SU 6 SU	0 SU	9 SU 6 SU	1
2IT00013 06/30/88 The Chessie System 004	pH	0	0	7 SU 6 SU	0 SU	9 SU 6 SU	1
2IT00013 12/31/87 The Chessie System 005	рH	0	0	7 SU 6 SU	0 SU	9 SU 6 SU	1
2IT00013 06/30/88 The Chessie System 005	рH	0	0	7 SU 6 SU	0 SU	9 SU 6 SU	1
* Subsubtotal *		v	v	0.00	0.00	0.00	6
* VIOLATIONS FOR PARAMETER: SOLIDS, TOTAL SUSPEND			0			1. A.	0
21T00013 04/30/88 The Chessie System	Solids, Total Suspended	0	1	0 mg/l	0 mg/l	0 mg/l	1
2IT00013 07/31/88 The Chessie System	Solids, Total Suspended	0	0	0 mg/l	0 mg/l	0 mg/l	1
2IT00013 06/30/88 The Chessie System 005	Solids, Total Suspended	0	0	0 mg/l	0 mg/l	45 mg/l 2440 mg/l	1
* Subsubtotal *				•			3
** Subtotal **						1	10
** VIOLATIONS FOR NPDES: 21W00010							10
× ×							
* VIOLATIONS FOR PARAMETER: SOLIDS, TOTAL SUSPEND 21W00010 01/31/87 Bowling Green Water Plant	Solids, Total Suspended		•		15 mg/l 13593 mg/l	20 mg/l	1
001 21W00010 02/28/87 Bowling Green Water Plant	Solids, Total Suspended	0	0	0 mg/l	15 mg/l	14230 mg/l 20 mg/l	1
001 2IW00010 03/31/87 Bowling Green Water Plant	Solids, Total Suspended	0	0	0 mg/l	13760 mg/l 15 mg/l	14100 mg/l 20 mg/l	1
001 21W00010 04/30/87 Bowling Green Water Plant	Solids, Total Suspended	0	0	0 mg/l	13415 mg/l 15 mg/l	14100 mg/l 20 mg/l	1
001 2IW00010 05/31/87 Bowling Green Water Plant	Solids, Total Suspended	0	0	0 mg/l	13216 mg/l 15 mg/l	13570 mg/l 20 mg/l	1
	anobeliana						•

Page No. I-11

NPDES Permit Number	DATE & OUTFALL Number	NAME OF	FACILITY/OWNER	NAME OF I	PARAMETER VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CO Līm/Me		MAX CONC Lim/Measured	TALLY
21w00010 21w00010 21w00010 21w00010 21w00010 21w00010 21w00010 21w00010 21w00010 21w00010 21w00010 21w00010	001 07/31/87 001 08/31/87 001 09/30/87 001 10/31/87 001 12/31/87 001 12/31/87 001 02/29/88 001 03/31/88 001 04/30/88 001 05/31/88 001 06/30/88 001	Bowling Bowling Bowling Bowling Bowling Bowling Bowling Bowling Bowling Bowling	Green Water Plant Green Water Plant	Solids, Solids, Solids, Solids, Solids, Solids, Solids, Solids, Solids, Solids, Solids,	Total Suspended Total Suspended	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 mg/l 0 mg/l	13213 15 mg/ 13395 15 mg/ 13243 15 mg/ 13228 15 mg/ 13078 15 mg/ 13158 15 mg/ 131682 15 mg/ 13125 15 mg/ 13235 15 mg/ 13235 15 mg/ 13235 15 mg/ 13270 15 mg/ 13270 15 mg/ 13255	l mg/l l mg/l l mg/l l mg/l l mg/l l mg/l l mg/l l mg/l l mg/l l l mg/l l	13670 mg/l 20 mg/l 13700 mg/l 20 mg/l 13870 mg/l 20 mg/l 13560 mg/l 20 mg/l 13650 mg/l 20 mg/l 13245 mg/l 20 mg/l 13750 mg/l 20 mg/l 13680 mg/l 20 mg/l 13690 mg/l 20 mg/l 13790 mg/l 13790 mg/l 20 mg/l 13890 mg/l 13890 mg/l 20 mg/l 13590 mg/l 20 mg/l 13890 mg/l 20 mg/l 13890 mg/l 20 mg/l 13890 mg/l 20 mg/l	1 1 1 1 1 1 1 1 1 1 1 1
** Subtota	al **	IPDES: 21	PA00026									19 19
	03/31/87 001 07/31/87 001	Village	: BOD 5 of Haskins of Haskins	BOD 5 BOD 5		4 3 4 3	6 4 6 10	0 mg/l 0 mg/l	10 mg/ 11 mg/ 10 mg/ 4 mg/l		15 mg/l 18 mg/l 15 mg/l 7 mg/l	1 1 2
	05/31/88 001		: FECAL COLIFORM of Haskins	Fecal Co	liform	0	0	0 SU	1000 s 100000		2000 SU 1000000 SU	1
* VIOLATIO 2PA00026 * Subsubte	05/31/87 001	RAMETER Village	: PH of Haskins	рH		0	0	7 SU 6 SU	O SU		9 SU 7 SU	1
* VIOLATIO 2PA00026	DNS FOR P/ 07/31/87	RAMETER Village	: SOLIDS, TOTAL SUSPENDE of Haskins	D Solids,	Total Suspended	5	7		12 mg/	1	18 mg/l	1
Page No.	1-12								NPDES	PERMIT	VIOLATIONS,	1987-8

NPDES Permit Number DATE & NAME OF FACILITY/OWNER OUTFALL NUMBER NAME OF PARAMETER VIOLATED

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC TALLY in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured

001 * Subsubtotal *		3	10	0 mg/l	4 mg/l	7 mg/l	_
** Subtotal **							1
TT VIOLATIONS FOR NURSE- 2000007			: .				5
** VIOLATIONS FOR NPDES: 2PB00007					1		
* VIOLATIONS FOR PARAMETER: BOD 5 2PB00007 01/31/87 South Shore Park WWTP	BOD 5	18	26 75	–	20 mg/l	30 mg/l	1
001 2PB00007 02/28/87 South Shore Park WWTP	BOD 5	56 18	26	0 mg/l	36 mg/l 20 mg/l	45 mg/l 30 mg/l	1
001 2PB00007 03/31/87 South Shore Park WWTP	BOD 5	60 18	69 26	0 mg/l	46 mg/l 20 mg/l	60 mg/l 30 mg/l	1
001 2PB00007 04/30/87 South Shore Park WWTP	BOD 5	67 18	80 26	0 mg/l	42 mg/l 20 mg/l	52 mg/l 30 mg/l	1
001 2PB00007 05/31/87 South Shore Park WWTP	BOD 5	62 18	84 26	0 mg/l	27 mg/l 20 mg/l	33 mg/l 30 mg/l	1
001 2PB00007 06/30/87 South Shore Park WWTP	BOD 5	49 18	84 26 58 26 51	0 mg/l	39 mg/l 20 mg/l	42 mg/l 30 mg/l	1
001 2PB00007 07/31/87 South Shore Park WWTP	BOD 5	28 18	26	0 mg/l	18 mg/l 20 mg/l	26 mg/l 30 mg/l	1
001 2PB00007 08/31/87 South Shore Park WWTP	BOD 5	14 18	51 26	0 mg/l	10 mg/l 20 mg/l	24 mg/l 30 mg/l	1
001 2PB00007 09/30/87 South Shore Park WWTP	BOD 5	14 18	72 26	0 mg/l	8 mg/l 20 mg/l	20 mg/l 30 mg/l	1
001 2PB00007 11/30/87 South Shore Park WWTP	BOD 5	54 18	81 26	0 mg/l	47 mg/l 20 mg/l	70 mg/l 30_mg/l	1
001 2PB00007 12/31/87 South Shore Park WWTP	BOD 5	69 18	436 26 67	0 mg/l	61 mg/l 20 mg/l	367 mg/l 30 mg/l	1
001 2PB00007 01/31/88 South Shore Park WWTP	BOD 5	60 18	26	0 mg/l	25 mg/l 20 mg/l	28 mg/l 30 mg/l	1
001 2PB00007 02/29/88 South Shore Park WWTP	BOD 5	44 18	64 26	0 mg/l	32 mg/l 20 mg/l	45 mg/l 30 mg/l	1
001 2PB00007 03/31/88 South Shore Park WWTP	BOD 5	46 18	63 26	0 mg/l	29 mg/l 20 mg/l	38 mg/l 30 mg/l	1
001 2PB00007 04/30/88 South Shore Park WWTP	BOD 5	61 18	176 26	0 mg/l	32 mg/l 20 mg/l	67 mg/l 30 mg/l	1
001 * Subsubtotal *		45	70	0 mg/l	29 mg/l	37 mg/l	
							15
* VIOLATIONS FOR PARAMETER: CHLORINE, TOTAL RESID 2PB00007 05/31/87 South Shore Park WWTP	UAL Chlorine, Total Residual	_			di se	1 mg/l	1
001 2PB00007 <u>06/</u> 30/87 South Shore Park WWTP	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	1 mg/l 1 mg/l	1
001 2PB00007 07/31/87 South Shore Park WWTP	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	1 mg/l 1 mg/l	1
001 2PB00007 08/31/87 South Shore Park WWTP	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	1 mg/l 1 mg/l	1
001 2PB00007 06/30/88 South Shore Park WWTP	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	440 mg/l 1 mg/l	1
001 * Subsubtotal *		0	0	0 mg/l	0 mg/l	1 mg/l	
							5
* VIOLATIONS FOR PARAMETER: FECAL COLIFORM 2PB00007 05/31/87 South Shore Park WWTP	Fecal Coliform				1000 SU	2000 su	1
Page No. I-13					NPDES PERI	MIT VIOLATIONS,	1987-8

NPDES PERMIT	DATE & OUTFALL	NAME OF	FACILITY/OWNER
NUMBER	NUMBER		

NAME OF PARAMETER VIOLATED

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured TALLY

2PB00007	001 06/30/87 South Shore Park WWTP	Fecal Coliform	0	0	0 SU	588695 SU 1000 SU	349428 SU 2000 SU	4
	001		0	0	0 SU	1000000 su	1000000 SU	1
2PB00007	07/31/87 South Shore Park WWTP 001	Fecal Coliform	0	0	0 SU	1000 SU 2365 SU	2000 SU 189736 SU	1
2P800007	08/31/87 South Shore Park WWTP	Fecal Coliform	0	0	0 SU	1000 SU 3961 SU	2000 SU	1
2PB00007	09/30/87 South Shore Park WWTP	Fecal Coliform	•	•		1000 SU	69282 SU 2000 SU	1
2PB00007	001 10/31/87 South Shore Park WWTP	Fecal Coliform	0	0	0 SU	439364 SU 1000 SU	4300002 SU 2000 SU	1
	001 05/31/88 South Shore Park WWTP	Fecal Coliform	0	0	0 SU	180 SU 1000 SU	7007 SU	
1	001		0	0	0 SU	4255 SU	2000 SU 36660 SU	1
2PB00007	06/30/88 South Shore Park WWTP 001	Fecal Coliform	0	0	0 SU	1000 SU 706 SU	2000 SU 3072 SU	1
2PB00007	07/31/88 South Shore Park WWTP	Fecal Coliform	•	0		1000 SU	2000 SU	1
* Subsubto	tal *		0	U	0 SU	340 SU	2549 SU	
								9
* VIOLATIO	NS FOR PARAMETER: SOLIDS, TOTAL SUSP	ENDED						
2PB00007	01/31/87 South Shore Park WWTP	Solids, Total Suspended	22 45	30		25 mg/l	35 mg/l	1
	001	• •	45	106	0 mg/l	29 mg/t	38 mg/l	-
	02/28/87 South Shore Park WWTP	Solids, Total Suspended	22	30	• •	25 mg/l	35 mg/l	1
	001 03/31/87 South Shore Park WWTP	Colide Total Supremanded	40	47 30	0 mg/l	28 mg/l	39 mg/l	
27500007	03/31/07 South Shore Park WWIP	Solids, Total Suspended	82	107	0 mg/l	25 mg/l 42 mg/l	35 mg/l 53 mg/l	I
2PB00007	04/30/87 South Shore Park WWTP	Solids, Total Suspended	22 82 22 68	30	V 1497 C	25 mg/l	35 mg/l	1
	001		68	136	0 mg/l	26 mg/l	38 mg/l	-
2PB00007	05/31/87 South Shore Park WWTP	Solids, Total Suspended	22 44 22	30		25 mg/l	35 mg/l	1
2P800007	UU1 04/30/87 South Change Donk LUITD	Colida Total Sugmended	44	61 30	0 mg/l	30 mg/l	36 mg/l	4
2800007	06/30/87 South Shore Park WWTP	Solids, Total Suspended	22	166	0 mg/l	25 mg/l 30 mg/l	35 mg/l 57 mg/l	
2PB00007	07/31/87 South Shore Park WWTP	Solids, Total Suspended	59 22	30	v ag/ t	25 mg/l	35 mg/l	1
1	001		10	30	0 mg/l	7 mg/l	15 mg/l	-
2PB00007	09/30/87 South Shore Park WWTP	Solids, Total Suspended	22	30		25 mg/l	35 mg/l	1
2000007			28	37	0 mg/l	24 mg/L	29 mg/l	
2PB00007	10/31/87 South Shore Park WWTP	Solids, Total Suspended	22 17	30 43	0 mg/l	25 mg/l 16 mg/l	35 mg/l 27 mg/l	1
2PB00007	11/30/87 South Shore Park WWTP	Solids, Total Suspended	22	30	0 mg/t	25 mg/l	27 mg/l 35 mg/l	1
	001	ootlaby forat babpenada	98	391	0 mg/l	82 mg/l	331 mg/l	1
2PB00007	12/31/87 South Shore Park WWTP	Solids, Total Suspended	98 22 72	30		25 mg/l	35 mg/l	1
	001		72	189	0 mg/l	22 mg/l	37 mg/l	_
2PB00007	01/31/88 South Shore Park WWTP	Solids, Total Suspended	22	30	0	25 mg/l	35 mg/l	1
2PB00007	007 02/29/88 South Shore Park WWTP	Solids, Total Suspended	22 54 22	119 30	0 mg/l	33 mg/l 25 mg/l	52 mg/l 35 mg/l	4
2580000	001	socius, rocat suspended	ร์ลิ	112	0 mg/l	25 mg/l 32 mg/l	64 mg/l	1
2PB00007	03/31/88 South Shore Park WWTP	Solids, Total Suspended	22	30		25 mg/l	35 mg/l	1
	001		26	47	0 mg/l	15 mg/l	17 mg/l	
	04/30/88 South Shore Park WWTP	Solids, Total Suspended	22 33	30 52	0 == (1	25 mg/l	35 mg/l	1
* Subsubto	001 tal *	4	33	72	0 mg/l	23 mg/l	26 mg/l	
*******								15

** Subtotal **

Page No. I-14

NPDES PERMIT VIOLATIONS, 1987-8

· { 1

15

44

NPDES	DATE &	NAME	0F	FACILITY/OWNER
PERMIT	OUTFALL			· · · · · · · ·
NUMBER	NUMBER			

NAME OF PARAMETER VIOLATED AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC TALLY in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured Lim/Measured

** VIOLATI	ONS	FOR	NPDES:	2PB00062
------------	-----	-----	--------	----------

* VIOLATIONS FOR PARAMETER: BOD 5							
2PB00062 05/31/87 Village of Whitehouse	BOD 5	40 41	60 47	0 mg/l	30 mg/l 41 mg/l	45 mg/l 48 mg/l	1
2PB00062 06/30/87 Village of Whitehouse	BOD 5	40	47		30 mg/l	45 mg/l	1
2PB00062 08/31/87 Village of Whitehouse	BOD 5	42 40	61 60	0 mg/l	36 mg/l 30 mg/l	42 mg/l 45 mg/l	1
2PB00062 09/30/87 Village of Whitehouse	BOD 5	40 40	53 60	0 mg/l	34 mg/l 30 mg/l	37 mg/l 45 mg/l	1
001 2PB00062 10/31/87 Village of Whitehouse	BOD 5	34 40	38 60	0 mg/l	36 mg/l 30 mg/l	38 mg/l 45 mg/l	1
001 2PB00062 11/30/87 Village of Whitehouse	BOD 5	30 40	42 60	0 mg/l	37 mg/l 30 mg/l	44 mg/l 45 mg/l	1
001 2PB00062 12/31/87 Village of Whitehouse	BOD 5	22 40	24 60	0 mg/l	36 mg/l 30 mg/l	36 mg/l 45 mg/l	1
001 2PB00062 01/31/88 Village of Whitehouse	BOD 5	44 40	60 60	0 mg/l	33 mg/l 30 mg/l	39 mg/l 45 mg/l	1
001 2PB00062 02/29/88 Village of Whitehouse	BOD 5	30 40	33 60	0 mg/l	33 mg/l 30 mg/l	35 mg/l 45 mg/l	1
001 2PB00062 03/31/88 Village of Whitehouse	BOD 5	43 40	56 60	0 mg/l	31 mg/l 30 mg/l	34 mg/l 45 mg/l	1
001 2PB00062 04/30/88 Village of Whitehouse	BOD 5	49 40	56 60	0 mg/l	38 mg/l 30 mg/l	42 mg/l 45 mg/l	1
001 2PB00062 05/31/88 Village of Whitehouse	BOD 5	434 40	54 60	0 mg/l	35 mg/l 30 mg/l	39 mg/l 45 mg/l	1
001 2PB00062 05/31/88 Village of Whitehouse	BOD 5	44 40	54 60	0 mg/l	35 mg/l 30 mg/l	39 mg/l 45 mg/l	1
001 2PB00062 06/30/88 Village of Whitehouse	BOD 5	49 40	50 60	0 mg/l	43 mg/l 30 mg/l	44 mg/l 45 mg/l	1
001 2PB00062 07/31/88 Village of Whitehouse	BOD 5	28 40	33 60	0 mg/l	45 mg/l 30 mg/l	48 mg/l 45 mg/l	' 1
001 * Subsubtotal *		42	45	0 mg/l	42 mg/l	46 mg/l	•
					19 (A)	1. A.	15
* VIOLATIONS FOR PARAMETER: CHLORINE, TOTAL RESI	DUAL					· · · · · · · · · · · · · · · · · · ·	
2PB00062 05/31/87 Village of Whitehouse 001	Chlorine, Total Residual	0	0	1 mg/l	0 mg/l	1 mg/l 1 mg/l	1
* Subsubtotal *							1
* VIOLATIONS FOR PARAMETER: FECAL COLIFORM 2PB00062 05/31/87 Village of Whitehouse	Fecal Coliform				1000 SU	2000 SU	1
001 2PB00062 06/30/87 Village of Whitehouse	Fecal Coliform	0	0	0 SU	1000000 SU 1000 SU	100000000 SU 2000 SU	1
001 2PB00062 07/31/87 Village of Whitehouse	Fecal Coliform	0	0	0 SU	1000000 su 1000 su	100000000 SU 2000 SU	•
2PB00062 09/30/87 Village of Whitehouse	Fecal Coliform	0	0	0 SU	1000000 SU 1000 SU	100000000 su	4
001		0	0	0 SU	1000000 SU	2000 SU 100000000 SU	I A
001	Fecal Coliform	0	0	0 SU	1000 SU 1000000 SU	2000 SU 100000000 SU	I
* Subsubtotal *							5
* VIOLATIONS FOR PARAMETER: SOLIDS, TOTAL SUSPEN					<u> </u>		
2PB00062 05/31/87 Village of Whitehouse 001	Solids, Total Suspended	40 39	60 45	0 mg/l	30 mg/l 39 mg/l	45 mg/l 42 mg/l	1
				_		-	

NPDES PERMIT	DATE & OUTFALL	NAME OF FACILITY/OWNER	NAME OF PARAMETER VIOLATED	AVG QUANTITY MAX QUANTITY MIN CONC in kg/day in kg/day	AVG CONC	MAX CONC	TALLY
NUMBER	NUMBER			Lim/Measured Lim/Measured Lim/Measure	d Lim/Measure	d Lim/Measured	

2PB00062 06/30/87 Village of Whitehouse	Solids, Total Suspended	40	60	A	30 mg/l	45 mg/L	1
2PB00062 07/31/87 Village of Whitehouse	Solids, Total Suspended	43 40	67 60	0 mg/l	37 mg/l 30 mg/l	45 mg/l 45 mg/l	1
001 2PB00062 08/31/87 Village of Whitehouse	Solids, Total Suspended	33 40	51 60	0 mg/l	32 mg/l 30 mg/l	34 mg/l 45 mg/l	1
001 2PB00062 09/30/87 Village of Whitehouse	Solids, Total Suspended	41 40	52 60	0 mg/l	34 mg/l 30 mg/l	37 mg/l 45 mg/l	1
2PB00062 10/31/87 Village of Whitehouse	Solids, Total Suspended	36	41 60	0 mg/l	39 mg/l	41 mg/l	,
001	•	26	33 60	0 mg/l	30 mg/l 33 mg/l	43 mg/l	
001	Solids, Total Suspended	36 40 26 40 23 40	24	0 mg/l	30 mg/l 37 mg/l	45 mg/l 40 mg/l	1
2PB00062 12/31/87 Village of Whitehouse	Solids, Total Suspended	40 40	60 46	0 mg/l	30 mg/l 31 mg/l	45 mg/l 39 mg/l	1
2PB00062 01/31/88 Village of Whitehouse 001	Solids, Total Suspended	40 40 30	60 38	0 mg/l	30 mg/l 32 mg/l	45 mg/l 37 mg/l	1
2PB00062 02/29/88 Village of Whitehouse 001	Solids, Total Suspended	40 43	60 58	0 mg/l	30 mg/l 31 mg/l	45 mg/l 32 mg/l	1
2PB00062 03/31/88 Village of Whitehouse	Solids, Total Suspended	40 43 40 49	60 68	0 mg/l	30 mg/l 37 mg/l	45 mg/l 42 mg/l	1
2PB00062 04/30/88 Village of Whitehouse	Solids, Total Suspended	40 43	60 55	0 mg/l	30 mg/l 35 mg/l	45 mg/l 41 mg/l	1
2PB00062 05/31/88 Village of Whitehouse	Solids, Total Suspended	40 48	60 49		30 mg/l	45 mg/l	1
2PB00062 06/30/88 Village of Whitehouse	Solids, Total Suspended	40	60 34	0 mg/l	42 mg/l 30 mg/l	45 mg/l	1
2PB00062 07/31/88 Village of Whitehouse	Solids, Total Suspended	40 29 40	60	0 mg/l	46 mg/l 30 mg/l	48 mg/l 45 mg/l	1
001 * Subsubtotal *		39	48	0 mg/l	38 mg/l	44 mg/l	
** Subtotal **							15
							36
** VIOLATIONS FOR NPDES: 2PD00002							
* VIOLATIONS FOR PARAMETER: BOD 5 2PD00002 04/30/87 Perrysburg, City of	BOD 5	523	678		50 mg/l	45 mg/1	4
001		522 565	687 678	1 mg/l	44 mg/L	65 mg/l 60 mg/l	1
2PD00002 05/31/87 Perrysburg, City of 001	BOD 5	522 570	633	1 mg/l	50 mg/l 53 mg/l	65 mg/l 72 mg/l	1
2PD00002 08/31/87 Perrysburg, City of 001	BOD 5	522 585	678 1256	1 mg∕l	50 mg⁄l 56 mg∕l	65 mg/l 94 mg/l	1
2PD00002 09/30/87 Perrysburg, City of							
001	BOD 5	522 504	678 640		50 mg/l	65 mg/l	1
001 2PD00002 10/31/87 Perrysburg, City of 001	BOD 5 BOD 5	522 504	678 640 678	0 mg/l	50 mg/l 56 mg/l 50 mg/l	65 mg/l 77 mg/l 65 mg/l	1
001 2PD00002 10/31/87 Perrysburg, City of 001 2PD00002 11/30/87 Perrysburg, City of		522 504 522 478	678 640 678 543 678	0 mg/l 0 mg/l	50 mg/l 56 mg/l 50 mg/l 56 mg/l 50 mg/l	65 mg/l 77 mg/l 65 mg/l 63 mg/l 65 mg/l	1 1 1
001 2PD00002 10/31/87 Perrysburg, City of 001	BOD 5	522 504	678 640 678 543	0 mg/l	50 mg/l 56 mg/l 50 mg/l 56 mg/l	65 mg/l 77 mg/l 65 mg/l 63 mg/l	-
001 2PD00002 10/31/87 Perrysburg, City of 001 2PD00002 11/30/87 Perrysburg, City of 001 * Subsubtotal *	BOD 5 BOD 5	522 504 522 478	678 640 678 543 678	0 mg/l 0 mg/l	50 mg/l 56 mg/l 50 mg/l 56 mg/l 50 mg/l	65 mg/l 77 mg/l 65 mg/l 63 mg/l 65 mg/l	1 1 1 6
001 2PD00002 10/31/87 Perrysburg, City of 001 2PD00002 11/30/87 Perrysburg, City of 001	BOD 5 BOD 5	522 504 522 478 522 437	678 640 678 543 678 893	0 mg/l 0 mg/l 0 mg/l	50 mg/l 56 mg/l 50 mg/l 56 mg/l 50 mg/l 43 mg/l	65 mg/l 77 mg/l 65 mg/l 65 mg/l 86 mg/l 86 mg/l	-
001 2PD00002 10/31/87 Perrysburg, City of 001 2PD00002 11/30/87 Perrysburg, City of 001 * Subsubtotal * * VIOLATIONS FOR PARAMETER: CHLORINE, TOTAL RE	BOD 5 BOD 5 SIDUAL	522 504 522 478 522 437	678 640 678 543 678 893 0	0 mg/l 0 mg/l	50 mg/l 56 mg/l 50 mg/l 56 mg/l 50 mg/l	65 mg/l 77 mg/l 65 mg/l 63 mg/l 86 mg/l	6
001 2PD00002 10/31/87 Perrysburg, City of 001 2PD00002 11/30/87 Perrysburg, City of 001 * Subsubtotal * * VIOLATIONS FOR PARAMETER: CHLORINE, TOTAL RE 2PD00002 01/31/87 Perrysburg, City of 001 2PD00002 05/31/87 Perrysburg, City of 001	BOD 5 BOD 5 SIDUAL Chlorine, Total Residual Chlorine, Total Residual	522 504 522 478 522 437	678 640 678 543 678 893	0 mg/l 0 mg/l 0 mg/l	50 mg/l 56 mg/l 50 mg/l 56 mg/l 50 mg/l 43 mg/l	65 mg/l 77 mg/l 65 mg/l 65 mg/l 86 mg/l 86 mg/l 1 mg/l 1 mg/l 1 mg/l 1 mg/l	6 1 1
2PD00002 10/31/87 Perrysburg, City of 001 2PD00002 11/30/87 Perrysburg, City of 001 * Subsubtotal * * VIOLATIONS FOR PARAMETER: CHLORINE, TOTAL RE 2PD00002 01/31/87 Perrysburg, City of 001	BOD 5 BOD 5 SIDUAL Chlorine, Total Residual	522 504 522 478 522 437	678 640 678 543 678 893 0	0 mg/l 0 mg/l 0 mg/l 0 mg/l	50 mg/l 56 mg/l 50 mg/l 56 mg/l 43 mg/l 0 mg/l	65 mg/l 77 mg/l 65 mg/l 63 mg/l 86 mg/l 1 mg/l 1 mg/l 1 mg/l	6

Page No. I-16

NPDES PERMIT NUMBER	DATE & OUTFALL NUMBER	NAME OF	FACILITY/OWNER
NUMBER	NUMBER		

i e come esta

NAME OF PARAMETER VIOLATED

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured

 $\sigma_{i,2} \in \mathcal{I}$

2PD00002 01/31/88 Perrysburg, City of 001	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	1 mg/l 1 mg/l	1
* Subsubtotal *				-			4
* VIOLATIONS FOR PARAMETER: FECAL COLIFORM 2PD00002 02/28/87 Perrysburg, City of	Fecal Coliform	0	0	0 SU	1000 SU 3156 SU	2000 SU 9794 SU	1
2PD00002 03/31/87 Perrysburg, City of	Fecal Coliform	- -	0		1000 SU	2000 SU	1
2PD00002 04/30/87 Perrysburg, City of	Fecal Coliform	0	U	0 SU	1000000 SU 1000 SU	100000000 SU 2000 SU	1
2PD00002 05/31/87 Perrysburg, City of	Fecal Coliform	0	0	0 SU	1000000 SU 1000 SU	100000000 SU 2000 SU	1
001 2PD00002 06/30/87 Perrysburg, City of	Fecal Coliform	0	0	0 SU	1287 SU 1000 SU	1978 SU 2000 SU	1
001 2PD00002 10/31/87 Perrysburg, City of	Fecal Coliform	0	0	0 SU	523 SU 1000 SU	5023 SU 2000 SU	1
001 2PD00002 12/31/87 Perrysburg, City of	Fecal Coliform	0	0	0 SU	82 SU 1000 SU	4071 SU 2000 SU	1
001 2PD00002 02/29/88 Perrysburg, City of	Fecal Coliform	0	0	0 SU	2522 SU 1000 SU	21037 SU 2000 SU	1
001 2PD00002 03/31/88 Perrysburg, City of	Fecal Coliform	0	0	0 SU	2670 SU 1000 SU	11505 SU 2000 SU	1
001 2PD00002 04/30/88 Perrysburg, City of	Fecal Coliform	0	0	0 SU	2301 SU 1000 SU	2672 SU 2000 SU	1
001 * Subsubtotel *		0	0	0 SU	1686 SU	10993 SU	•
							10
* VIOLATIONS FOR PARAMETER: OIL AND GREASE 2PD00002 02/28/87 Perrysburg, City of 001	Oil and Grease	0	0	0 mg/l	0 mg/l	5 mg/l 6 mg/l	1
* Subsubtotal *							1
* VIOLATIONS FOR PARAMETER: PHOSPHORUS, TOTAL 2PD00002 07/31/88 Perrysburg, City of 001	Phosphorus, Total	10 8	16 13	0 mg/l	1 mg/l 1 mg/l	2 mg/l 2 mg/l	1
2PD00002 01/31/87 Perrysburg, City of 001	Phosphorus, Total	10 26	16 35		1 mg/l 1 mg/l 2 mg/l	2 mg/l	1
2PD00002 02/28/87 Perrysburg, City of	Phosphorus, Total	10	16	0 mg/l	2 mg/l 1 mg/l	3 mg/l 2 mg/l	1
2PD00002 03/31/87 Perrysburg, City of	Phosphorus, Total	24 10	39 16	0 mg/l	2 mg/l 1 mg/l	3 mg/l 2 mg/l	1
2PD00002 04/30/87 Perrysburg, City of	Phosphorus, Total	31 10	34 16	0 mg/l	2 mg/l 1 mg/l	3 mg/l 2 mg/l	1
2PD00002 05/31/87 Perrysburg, City of	Phosphorus, Total	24 10	33 16	0 mg/l	2 mg/l 1 mg/l	3 mg/l 2 mg/l	1
2PD00002 06/30/87 Perrysburg, City of	Phosphorus, Total	36 10	48 16	0 mg/l	3 mg/l 1 mg/l	4 mg/l 2 mg/l	1
001 2PD00002 07/31/87 Perrysburg, City of	Phosphorus, Total	11 10	16 16	0 mg/l	1 mg/l 1 mg/l	1 mg/l 2 mg/l	1
001 2PD00002 08/31/87 Perrysburg, City of	Phosphorus, Total	18 10	36 16	0 mg/l	2 mg/l 1 mg/l	2 mg/l 2 mg/l	1
001 2PD00002 09/30/87 Perrysburg, City of	Phosphorus, Total	32 10	95 16	0_mg/l	3 mg/l 1 mg/l	6 mg/l 2 mg/l	1
001 2PD00002 10/31/87 Perrysburg, City of 001	Phosphorus, Total	30 10 17	58 16 37	0 mg/l 0 mg/l	3 mg/l 1 mg/l 2 mg/l	5 mg/l 2 mg/l 3 mg/l	1

TALLY

NPDES PERMIT	DATE & OUTFALL	NAME OF FACILITY/OWNER	NAME OF PARAMETER VIOLATED	AVG QUANTITY in kg/day	MAX QUANTITY in kg/day	MIN CONC	AVG CONC	MAX CONC	TALLY
NUMBER	NUMBER				Lim/Measured	Lim/Measured	Lim/Measured	Lim/Measured	
2PD00002 2PD00002 2PD00002	001 12/31/87 001 01/31/88 001 02/29/88 001	Perrysburg, City of Perrysburg, City of Perrysburg, City of Perrysburg, City of	Phosphorus, Total Phosphorus, Total Phosphorus, Total Phosphorus, Total	10 32 10 26 10 28 10 28	16 61 16 41 16 42 16 36	0 mg/l 0 mg/l 0 mg/l 0 mg/l	1 mg/l 3 mg/l 1 mg/l 1 mg/l 1 mg/l 2 mg/l 1 mg/l 2 mg/l	2 mg/l 6 mg/l 2 mg/l 2 mg/l 3 mg/l 2 mg/l 2 mg/l	1 1 1 1
2PD00002 2PD00002	001 04/30/88 001 05/31/88 001 06/30/88 001	Perrysburg, City of Perrysburg, City of Perrysburg, City of Perrysburg, City of	Phosphorus, Total Phosphorus, Total Phosphorus, Total Phosphorus, Total	10 18 10 23 10 35 10 20	16 21 16 38 16 48 16 26	0 mg/l 0 mg/l 0 mg/l 0 mg/l	1 mg/l 1 mg/l 2 mg/l 1 mg/l 4 mg/l 1 mg/l 3 mg/l	2 mg/l 2 mg/l 2 mg/l 2 mg/l 2 mg/l 6 mg/l 3 mg/l 3 mg/l	1 1 1 1 19
2PD00002 2PD00002 2PD00002 2PD00002 2PD00002 2PD00002 2PD00002 2PD00002 2PD00002 2PD00002 2PD00002 2PD00002 2PD00002	01/31/87 001 02/28/87 001 03/31/87 001 04/30/87 001 05/31/87 001 06/30/87 001 08/31/87 001 09/30/87 001 01/31/88 001 02/29/88 001 05/31/88 001 05/31/88 001 05/31/88 001	ARAMETER: SOLIDS, TOTAL SUSPE Perrysburg, City of Perrysburg, City of	NDED Solids, Total Suspended Solids, Total Suspended	522 491 522 420 522 772 522 772 522 721 522 721 522 721 522 721 522 722 522 722 522 722 522 722 522 722 522 7522 7522 522	678 927 678 1051 678 1161 678 826 678 1091 678 2270 678 2270 678 1236 678 1548 678 1548 678 1548 678 106 678 850 678 850 678 830	0 mg/l 0 mg/l	50 mg/l 43 mg/l 50 mg/l 50 mg/l 56 mg/l 58 mg/l 59 mg/l 59 mg/l 59 mg/l 50 mg/l 50 mg/l 50 mg/l 50 mg/l 50 mg/l 50 mg/l 50 mg/l 28 mg/l 50 mg/l 63 mg/l 63 mg/l	65 mg/l 58 mg/l 65 mg/l 74 mg/l 65 mg/l 80 mg/l 65 mg/l 42 mg/l 65 mg/l 65 mg/l 146 mg/l 65 mg/l 146 mg/l 65 mg/l 141 mg/l 65 mg/l 65 mg/l 47 mg/l 65 mg/l 65 mg/l 97 mg/l 97 mg/l	1 1 1 1 1 1 1 1 1 1 1 1
* VIOLATIC	ONS FOR PA 05/31/87 001	NPDES: 2PD00035 ARAMETER: CHLORINE, TOTAL RES DuPont Road WWTP	IDUAL Chlorine, Total Residual	0	0	0 mg∕l	0 mg/l	1 mg/l 1 mg/l	53 1 1

Page No. I-18

NPDES PERMIT VIOLATIONS, 1987-8

		Contract of Contra					5. r au 10						
NPD Peri Num	MIT	DATE & OUTFALL NUMBER	NAME OF	FACILITY/OWNER	R NAME OF	PARAMETER	VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
2PD 2PD		07/31/87 001 08/31/87 001	DuPont	: FECAL COLIFOR Road WWTP Road WWTP	Fecal C	oliform		0 0	0 *	O SU O SU	1000 SU 1000000 SU 1000 SU 1000000 SU	2000 SU 100000000 SU 2000 SU 100000000 SU	1 1 2
2PD) 2PD)	10LATI 00035 00035 ubsubt	04/30/87 001 06/30/88 001	DuPont	: PHENOLICS, TC Road WWTP Road WWTP	Phenoli	cs, Total cs, Total		0 0	0 0	0 μg/l 0 μg/l	0 μg/l 0 μg/l	27 μg/l 60 μg/l 27 μg/l 110 μg/l	1
2PD	IOLATI 00035 ubsubt	07/31/87 001	ARAMETER DuPont	: PHOSPHORUS, T Road WWTP		rus, Total		31 15	46 26	0 mg/l	1 mg/l 1 mg/l	2 mg/l 1 mg/i	1
2PD * S	IOLATI 00035 ubsubt Subtot	06/30/87 001 otal *	ARAMETER DuPont	: SOLIDS, TOTAL Road WWTP		Total Sus	pended	607 254	910 381	0 mg∕l	20 mg/l 15 mg/l	30 mg/l 33 mg/l	1
* v	IOLATI	IONS FOR ONS FOR P 01/31/88 001	ARAMETER	: BOD 5	BOD 5		,	19713 13201	29569 13446	0 mg/1	40 mg/l 49 mg/l	60 mg/l	7
2PF	00000 00000 ubsubt	02/29/88 001 03/31/88 001		•	BOD 5 BOD 5			19713 19232 19713 15442	29569 27425 29569 23800	0 mg/l 0 mg/l 0 mg/l	49 mg/l 40 mg/l 40 mg/l 40 mg/l	55 mg/l 60 mg/l 66 mg/l 60 mg/l 63 mg/l	1
2PF	IOLATI 00000 ubsubt	04/30/87 001	ARAMETER Toledo,	: CHLORINE, TOT City of		e, Total Ro	esidual	0	0	21 mg/l	0 mg/l	1 mg/l 149 mg/l	1
2PF1 2PF1 2PF1 2PF1	TOLATIO 00000 00000 00000 00000 00000	ONS FOR P 04/30/87 001 05/31/87 06/30/87 001 07/31/87 001 08/31/87	Toledo, Toledo, Toledo, Toledo,	City of City of City of	Fecal C Fecal C Fecal C Fecal C	oliform oliform oliform oliform oliform		0 0 0 0	0 0 0 0	0 SU 0 SU 0 SU 0 SU	1000 SU 1000000 SU 1000000 SU 1000000 SU 1000 SU 1000000 SU 1000 SU 1000000 SU 1000000 SU	2000 SU 100000000 SU 2000 SU 10000000 SU 2000 SU 100000000 SU 2000 SU 100000000 SU 2000 SU	1 1 1 1

Page No. I-19

NPDES DATE & NAME OF FACILITY/OWNER Permit Outfall Number Number	NAME OF PARAMETER VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
001 2PF00000 09/30/87 Toledo, City of 001 2PF00000 10/31/87 Toledo, City of 001 2PF00000 04/30/88 Toledo, City of 001 2PF00000 05/31/88 Toledo, City of 001 2PF00000 07/31/88 Toledo, City of 001 * Subsubtotal *	Fecal Coliform Fecal Coliform Fecal Coliform Fecal Coliform Fecal Coliform	0 0 0 0 0	0 0 0 0 0	0 SU 0 SU 0 SU 0 SU 0 SU 0 SU	1000000 SU 1000 SU 1000000 SU 100000 SU 100000 SU 100000 SU 100000 SU 1000000 SU 1000000 SU 1000000 SU	100000000 SU 2000 SU 10000000 SU 2000 SU 10000000 SU 2000 SU 10000000 SU 2000 SU 10000000 SU 2000 SU 10000000 SU	1 1 1 1 1
* VIOLATIONS FOR PARAMETER: MERCURY, AS HG 2PF00000 07/31/88 Toledo, City of 001 * Subsubtotal *	Mercury, as Hg	0	0	0 µg/l	0 μg/l	0 μg/l 1 μg/i	1
* VIOLATIONS FOR PARAMETER: PH 2PF00000 02/29/88 Toledo, City of 001 * Subsubtotal *	рН	0	0	7 SU 6 SU	O SU	9 SU 8 SU	1
* VIOLATIONS FOR PARAMETER: PHENOLICS, TOTAL 2PF00000 07/31/88 Toledo, City of 001 * Subsubtotai *	Phenolics, Total	0	0	0 μg/l	Ο µg/l	16 μg/l 41 μg/l	1
 * VIOLATIONS FOR PARAMETER: PHOSPHORUS, TOTAL 2PF00000 01/31/87 Toledo, City of 001 2PF00000 02/28/87 Toledo, City of 001 2PF00000 03/31/87 Toledo, City of 001 2PF00000 04/30/87 Toledo, City of 001 2PF00000 06/30/87 Toledo, City of 001 2PF00000 07/31/87 Toledo, City of 001 2PF00000 07/31/87 Toledo, City of 001 2PF00000 08/31/87 Toledo, City of 001 2PF00000 09/30/87 Toledo, City of 001 2PF00000 10/31/87 Toledo, City of 001 2PF00000 12/31/87 Toledo, City of 001 2PF00000 12/31/87 Toledo, City of 001 2PF00000 01/31/88 Toledo, City of 001 2PF00000 02/29/88 Toledo, City of 001 2PF00000 03/31/88 Toledo, City of 	Phosphorus, Total Phosphorus, Total	493 252 493 314 493 540 493 267 493 267 493 493 399 493 493 502 493 424 493 512 493 512 493 512 493 512 493	740 523 740 451 7403 740 740 740 7409 740 740 740 740 740 740 740 740 740 740	0 mg/l 0 mg/l	1 mg/l 1 mg/l	22222222222222222222222222222222222222	

Page No. 1-20

	· · · · ·			· · · · · · · · · · · · · · · · · · ·			•			
NPDES PERMIT NUMBER	DATE & N/ OUTFALL NUMBER	AME OF	FACILITY/OWNER	NAME OF PARAMETER VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
2PF00000 2PF00000 * Subsubt	001 05/31/88 To 001 06/30/88 To 001 otal *			Phosphorus, Total Phosphorus, Total	492 493 218 493 281	798 740 413 740 396	0 mg/l 0 mg/l 0 mg/l	1 mg/l 1 mg/l 1 mg/l 1 mg/l 1 mg/l	2 mg/l 2 mg/l 2 mg/l 2 mg/l 2 mg/l	1
2PF00000 2PF00000 2PF00000 2PF00000 2PF00000 2PF00000 2PF00000 2PF00000 * Subsubt	03/31/87 To 001 04/30/87 To 001 06/30/87 To 001 07/31/87 To 001 08/31/87 To 001 12/31/87 To 001 01/31/88 To 001 02/29/88 To 001 03/31/88 To 001 04/30/88 To 001 :otal *	oledo, oledo, oledo, oledo, oledo, oledo, oledo, oledo,	City of City of City of City of City of City of City of City of City of City of	D Solids, Total Suspended Solids, Total Suspended	29569 34359 20316 29569 20351 29569 19112 29569 23438 29569 23438 29569 20351 29569 30351 29569 30351 29569 30551 29569 20653	44354 43934 44354 57101 44354 33570 44354 28354 28208 44354 22947 443898 44354 44354 57789 44354 57789 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 22426 44354 2254 2254 2254 2254 2254 2254 225	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	60 mg/l 110 mg/l 60 mg/l	90 mg/l 124 mg/l 90 mg/l 137 mg/l 90 mg/l 134 mg/l 90 mg/l 90 mg/l 90 mg/l 90 mg/l 90 mg/l 117 mg/l 117 mg/l 111 mg/l 90 mg/l 101 mg/l	1 1 1 1 1 1 1 10 42
* VIOLATI 2PG00002 2PG00002 2PG00002 2PG00002 2PG00002 2PG00002 2PG00002 2PG00002 2PG00002 2PG00002	ONS FOR PAR/ 01/31/87 Lt 001 02/28/87 Lt 001 03/31/87 Lt 001 04/30/87 Lt 001 06/30/87 Lt 001 10/31/87 Lt 001 11/30/87 Lt 001 12/31/87 Lt 001 01/31/88 Lt 001	AMETER: UCAS CO UCAS CO UCAS CO UCAS CO UCAS CO UCAS CO UCAS CO UCAS CO		BOD 5 BOD 5	4 63 420 49 473 44 5 47 45 47 45 47 45 47 4	6 83 6 28 6 12 6 13 6 13 6 6 10 6 10 6 9 6 6 12 6	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	18 mg/l 215 mg/l 18 mg/l 63 mg/l 27 mg/l 18 mg/l 146 mg/l 18 mg/l 11 mg/l 18 mg/l 11 mg/l 26 mg/l 18 mg/l 13 mg/l	25 mg/l 300 mg/l 25 mg/l 25 mg/l 25 mg/l 25 mg/l 300 mg/l 300 mg/l 30 mg/l 16 mg/l 25 mg/l 34 mg/l 25 mg/l 30 mg/l 25 mg/l 25 mg/l 25 mg/l 25 mg/l 25 mg/l 25 mg/l	1 1 1 1 1 1 1 1 1 1 1

·----

·____

NAME OF PARAMETER VIOLATED

001	·	12	24	0 mg/l	32 mg/l	77 mg/l	_
2PG00002 03/31/88 Lucas County Bentbrook Farms 001	BOD 5	4	6 · 5	0 mg/l	18 mg/l 13 mg/l	25 mg/l 16 mg/l	1
2PG00002 04/30/88 Lucas County Bentbrook Farms	BOD 5	4	6	0 mg/l	18 mg/l 12 mg/l	25 mg/l 19 mg/l	1
2PG00002 05/31/88 Lucas County Bentbrook Farms	BOD 5	4	ő		18 mg/l	25 mg/l	1
2PG00002 06/30/88 Lucas County Bentbrook Farms	BOD 5	11 4	18 6	0 mg/L	44 mg/l 18 mg/l	70 mg/l 25 mg/l	1
* Subsubtotal *		4	3	0 mg/l	24 mg/l	12 mg/l	
							15
* VIOLATIONS FOR PARAMETER: CHLORINE, TOTAL RESIL 2PG00002 05/31/87 Lucas County Bentbrook Farms	OUAL Chlorine, Total Residual					1 mg/l	1
001		0	0	0 mg/l	0 mg/l	4 mg/l	1
2PG00002 06/30/87 Lucas County Bentbrook Farms	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	1 mg/l 4 mg/l	
2PG00002 07/31/87 Lucas County Bentbrook Farms 001	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	1 mg/l 4 mg/l	1
2PG00002 08/31/87 Lucas County Bentbrook Farms 001	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	1 mg/l 4 mg/l	1
2PG00002 09/30/87 Lucas County Bentbrook Farms	Chlorine, Total Residual	0	0	0 mg/l	0 mg/L	1 mg/l 4 mg/l	1
2PG00002 10/31/87 Lucas County Bentbrook Farms 001	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	1 mg/l	1
* Subsubtotal *		0	Ŭ	o mg/ c	V mg/t	4 mg/l	
					1		6
* VIOLATIONS FOR PARAMETER: FECAL COLIFORM 2PG00002 05/31/87 Lucas County Bentbrook Farms	Fecal Coliform				200 SU	400 SU	1
001 2PG00002 06/30/87 Lucas County Bentbrook Farms	Fecal Coliform	0	0	0 SU	1261 SU 200 SU	5300 SU 400 SU	1
001 2PG00002 07/31/87 Lucas County Bentbrook Farms	Fecal Coliform	0	0	0 SU	11994 SU 200 SU	25800 SU 400 SU	1
001	Fecal Coliform	0	0	0 SU	1058 SU 200 SU	370 SU 400 SU	1
2PG00002 08/31/87 Lucas County Bentbrook Farms		0	0	0 SU	993 SU	1600 SU	
2PG00002 09/30/87 Lucas County Bentbrook Farms 001	Fecal Coliform	0	0	0 SU	200 SU 1522 SU	400 SU 13500 SU	1
2PG00002 10/31/87 Lucas County Bentbrook Farms	Fecal Coliform	0	0	0 SU	200 SU 146325 SU	400 SU 292000 SU	1
2PG00002 05/31/88 Lucas County Bentbrook Farms	Fecal Coliform	0	0	0 SU	200 SU 10000 SU	400 SU 10000 SU	1
2PG00002 06/30/88 Lucas County Bentbrook Farms	Fecal Coliform	0	0		200 SU 10275 SU	400 SU 34000 SU	1
* Subsubtotal *		U	U .	0 SU	10273 30	34000 50	•
							8
* VIOLATIONS FOR PARAMETER: FLOW, TOTAL 2PG00002 10/31/87 Lucas County Bentbrook Farms	Flow, Total		0				1
001 2PG00002 01/31/88 Lucas County Bentbrook Farms	Flow, Total	0	0	0 mgd	0 mgd	0 mgd	1
001 2PG00002 02/29/88 Lucas County Bentbrook Farms	Flow, Total	0	Ŏ	0 mgđ	0 mgd	0 mgd	1
001		0	0	0 mgd	0 mgd	0 mgd	•
2PG00002 03/31/88 Lucas County Bentbrook Farms 001 2PG0002 02/20/88 Lucas County Pentbrook Farms	Flow, Total	0	0	0 mgd	0 mgd	0 mgd	1
2PG00002 04/30/88 Lucas County Bentbrook Farms	Flow, Total		U				1

Page No. I-22

	11 manual to 1					1					1	
NPDES PERMIT NUMBER	DATE & OUTFALL NUMBER	NAME OF FAC	ILITY/OWNER		NAME OF PAR	AMETER VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
2PG00002	001 05/31/88	Lucas Count	y Bentbrook	Farms	Flow, Total		0	0	0 mgd	0 mgd	0 mgd	1
2PG00002	001	Lucas Count			Flow, Total		0	0 0	0 mgd	0 mgd	0 mgd	1
* Subsubt	001						0	Ō	0 mgd	0 mgd	0 mgd	7
* VIOLATI		ARAMETER: OX										
2PG00002	10/31/87 001	Lucas Count	y Bentbrook	Farms	Oxygen, Dis	solved	0	0	5 mg/l 2 mg/l	0 mg/l	0 mg/l	1
2PG00002	11/30/87 001	Lucas County	y Bentbrook	Farms	Oxygen, Dis	solved	0	0	5 mg/l 2 mg/l	0 mg/l	0 mg/l	1
2PG00002		Lucas Count	y Bentbrook	Farms	Oxygen, Dis	solved	0	0	5 mg/l	0 mg/l	0 mg/l	1
2PG00002		Lucas Count	y Bentbrook	Farms	Oxygen, Dis	solved	0	•	5 mg/l	-	-	1
2PG00002	05/31/88	Lucas Count	y Bentbrook	Farms	Oxygen, Dis	solved		0	1 mg/l 5 mg/l	0 mg/l	0 mg/l	1
2PG00002	001 06/30/88	Lucas County	y Bentbrook	Farms	Oxygen, Dis	solved	0	0	4 mg/l 5 mg/l	0 mg/l	0 mg/l	1
* Subsubt	001 total *						0	0	4 mg/l	0 mg/l	0 mg/l	6
* VI014TI	ONS FOR D	ARAMETER: SO		CHEDENDE	:n							Ũ
29600002		Lucas County				al Suspended	5 67	8 84	0 mg/l	20 mg/l 218 mg/l	35 mg/l	1
2PG00002	02/28/87	Lucas County	y Bentbrook	Farms	Solids, Tot	al Suspended	5	8	0 mg/l	20 mg/l	252 mg/l 35 mg/l	1
2PG00002	001 03/31/87	Lucas Count	y Bentbrook	Farms	Solids, Tot	al Suspended	27	40 8	0 mg/l	86 mg/l 20 mg/l 32 mg/l	120 mg/l 35 mg/l	1
2PG00002		Lucas County	y Bentbrook	Farms	Solids, Tot	al Suspended	10 5	17 8	0 mg/l	32 mg/l 20 mg/l	62 mg/l 35 mg/l	1
2PG00002	001 06/30/87	Lucas County	y Bentbrook	Farms	Solids, Tot	al Suspended	127 5	239	0 mg/l	254 mg/l 20 mg/l	536 mg/l 35 mg/l	1
2PG00002	001	Lucas Count				al Suspended	4 5	8 8	0 mg/l	12 mg/l 20 mg/l	20 mg/l 35 mg/l	1
2PG00002	001	Lucas Count				al Suspended	8 5	16 8	0 mg/l	17 mg/l 20 mg/l	26 mg/l 35 mg/l	1
2PG00002	001	Lucas County				al Suspended	10 5	13 8	0 mg∕l	33 mg/l	40 mg/l	1
	001					•	9	17	0 mg∕l	20 mg/l 29 mg/l 20 mg/l	35 mg/l 40 mg/l	
2PG00002	001	Lucas County				al Suspended	6	8 11	0 mg/l	15 mg/l	35 mg/l 19 mg/l	1
2PG00002	001	Lucas County				al Suspended	5 9	8 19	0 mg/l	20 mg/l 22 mg/l	35 mg/l 43 mg/l	1
2PG00002	02/29/88 001	Lucas County	y Bentbrook	Farms	Solids, Tot	al Suspended	5 23	8 46	0 mg/l	20 mg/l 61 mg/l	35 mg/l 148 mg/l	1
2PG00002	03/31/88 001	Lucas County	y Bentbrook	Farms	Solids, Tot	al Suspended	23 5 9	8 8	0 mg/l	20 mg/l 24 mg/l	35 mg/l 25 mg/l	-1
2PG00002		Lucas County	y Bentbrook	Farms	Solids, Tot	al Suspended	57	8 10		20 mg/l	35 mg/l	1
2PG00002	05/31/88	Lucas County	y Bentbrook	Farms	Solids, Tot	al Suspended	5	8	0 mg/l	20 mg/l 20 mg/l	32 mg/l 35 mg/l	1
2PG00002	001 06/30/88	Lucas County	y Bentbrook	Farms	Solids, Tot	al Suspended	15 5	26 8	0 mg/l	60 mg/l 20 mg/l	102 mg/l 35 mg/l	1
* Subsubt	001 otal *						16	2	0 mg/l	92 mg/l	9 mg/l	
** Subtot	al **											15

** Subtotal **

NPDES	DATE &	NAME OF FACILITY/OWNER	NAME OF PARAMETER VIOLATED
PERMIT	OUTFALL		
NUMBER	NUMBER		

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured TALLY

							57
** VIOLATIONS FOR NPDES: 2PH00000							
* VIOLATIONS FOR PARAMETER: CHLORINE, TOTAL RESID 2PH00000 06/30/88 Fuller's Creekside Estates 001 * Subsubtotal *	UAL Chlorine, Total Residual	0	0	0 mg/l	0 mg/t	1 mg/l 1 mg/l	1
 * VIOLATIONS FOR PARAMETER: OXYGEN, DISSOLVED 2PH00000 05/31/88 Fuller's Creekside Estates 001 2PH00000 06/30/88 Fuller's Creekside Estates 001 * Subsubtotal * 	Oxygen, Dissolved Oxygen, Dissolved	0 0	0 0	5 mg/l 1 mg/l 5 mg/l 2 mg/l	0 mg/l 0 mg/l	0 mg/l 0 mg/l	1 1 2
* VIOLATIONS FOR PARAMETER: PH 2PH00000 06/30/88 Fuller's Creekside Estates 001 * Subsubtotal * ** Subtotal **	рН	0	0	7 SU 6 SU	O SU	9 SU 7 SU	1 1 4
** VIOLATIONS FOR NPDES: 2PH00004							4
<pre>* VIOLATIONS FOR PARAMETER: BOD 5 2PH00004 01/31/87 Lincoln Green</pre>	BOD 5 BOD 5 BOD 5	13 29 13 70 13 13	23 43 23 268 23 55	0 mg/l 0 mg/l 0 mg/l	20 mg/l 45 mg/l 20 mg/l 154 mg/l 20 mg/l 27 mg/l	35 mg/l 108 mg/l 35 mg/l 594 mg/l 35 mg/l 114 mg/l	1 1 1 3
<pre>* VIOLATIONS FOR PARAMETER: CHLORINE, TOTAL RESID 2PH00004 05/31/87 Lincoln Green 001 2PH00004 06/30/87 Lincoln Green 001 2PH00004 08/31/87 Lincoln Green 001 2PH00004 08/31/87 Lincoln Green 001 2PH00004 09/30/87 Lincoln Green 001 2PH00004 10/31/87 Lincoln Green 001 * Subsubtotal *</pre>	UAL Chlorine, Total Residual Chlorine, Total Residual Chlorine, Total Residual Chlorine, Total Residual Chlorine, Total Residual Chlorine, Total Residual	0 0 0 0 0	0 0 0 0 0	O mg/l O mg/l O mg/l O mg/l O mg/l	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	1 mg/l 4 mg/l 1 mg/l 4 mg/l 1 mg/l 1 mg/l 1 mg/l 3 mg/l 1 mg/l 4 mg/l 4 mg/l	1 1 1 1 1 5
* VIOLATIONS FOR PARAMETER: FECAL COLIFORM 2PH00004 05/31/87 Lincoln Green 001 2PH00004 06/30/87 Lincoln Green	Fecal Coliform Fecal Coliform	0	0	0 SU	200 SU 458 SU 200 SU	400 SU 10500 SU 400 SU	1 1

Page No. 1-24

.....

NPDES PERMIT NUMBER

NAME OF PARAMETER VIOLATED

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC TALLY in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured

			÷					
2PH00004 2PH00004	001 07/31/87 Lincoln Green 001 08/31/87 Lincoln Green 001	Fecal Coliform Fecal Coliform	0 0 0	0 0 0	0 SU 0 SU 0 SU	8272 SU 200 SU 909 SU 200 SU 6095 SU	25700 SU 400 SU 6800 SU 400 SU 16100 SU	1
2PH00004 2PH00004 2PH00004 * Subsubt	09/30/87 Lincoln Green 001 05/31/88 Lincoln Green 001 06/30/88 Lincoln Green 001	Fecal Coliform Fecal Coliform Fecal Coliform	0 0 0	0 0 0	0 SU 0 SU 0 SU	200 SU 24016 SU 200 SU 6000 SU 200 SU 24150 SU	400 SU 46000 SU 400 SU 6000 SU 400 SU 90000 SU	1 1 1
	ONS FOR PARAMETER: FLOW, TOTAL 11/30/87 Lincoln Green 001 12/31/87 Lincoln Green 01 01/31/88 Lincoln Green 001 02/29/88 Lincoln Green 001 03/31/88 Lincoln Green 001 04/30/88 Lincoln Green 001	Flow, Total Flow, Total Flow, Total Flow, Total Flow, Total Flow, Total	0 0 0 0 0		0 mgd 0 mgd 0 mgd 0 mgd 0 mgd 0 mgd	0 mgd 0 mgd 0 mgd 0 mgd 0 mgd 0 mgd 0 mgd	0 mgd 0 mgd 0 mgd 0 mgd 0 mgd 0 mgd 0 mgd	7 1 1 1 1 1 1
* VIOLATI	ONS FOR PARAMETER: SOLIDS, TOTAL SUSPEN 01/31/87 Lincoln Green 021 02/28/87 Lincoln Green 001 04/30/87 Lincoln Green 001 :otal *	DED Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended	21 23 21 29 21 22	33 55 33 108 33 96	0 mg/l 0 mg/l 0 mg/l	32 mg/l 44 mg/l 32 mg/l 64 mg/l 32 mg/l 44 mg/l	52 mg/l 140 mg/l 52 mg/l 240 mg/l 52 mg/l 200 mg/l	6 1 1 3 25
	IONS FOR NPDES: 2PH00013 ONS FOR PARAMETER: BOD 5 01/31/87 Oak Openings Industrial Park 001 02/28/87 Oak Openings Industrial Park 01 04/30/87 Oak Openings Industrial Park 01 05/31/87 Oak Openings Industrial Park 001 06/30/87 Oak Openings Industrial Park 001 08/31/87 Oak Openings Industrial Park	 BOD 5 	71277575727	10 21 10 37 10 16 10 17 10 13 10 4	O mg/l O mg/l O mg/l O mg/l O mg/l O mg/l	10 mg/l 35 mg/l 10 mg/l 43 mg/l 10 mg/l 10 mg/l 20 mg/l 10 mg/l 10 mg/l 10 mg/l 10 mg/l	15 mg/l 54 mg/l 15 mg/l 15 mg/l 15 mg/l 15 mg/l 50 mg/l 15 mg/l 15 mg/l 15 mg/l 15 mg/l 15 mg/l 15 mg/l	1 1 1 1 1 1

00 2PH00013 10)1)/31/87 Oak Openings	Inductrial Dack	BOD 5	27	7 10	0 mg∕l	12 mg/l 10 mg/l	31 mg/L	4
0(BOD 5	3	4 10	0 mg/l	16 mg/l	15 mg/l 24 mg/l	•
00)1			2	5	0 mg/l	10 mg/l 13 mg/l	15 mg/l 30 mg/l	1
00		•	BOD 5	6	10 7	0 mg/l	10 mg/l 31 mg/l	15 mg/l 45 mg/l	1
00			BOD 5	7	10 2	0 mg/l	10 mg/l 11 mg/l	15 mg/l 14 mg/l	1
00	5/31/88 Oak Openings		BOD 5	7	10 12	0 mg/l	10 mg/l 34 mg/l	15 mg/l 57 mg/l	1
2PH00013 02	5/30/88 Oak Openings	Industrial Park	BOD 5	7	10 7	0 mg/l	10 mg/l 32 mg/l	15 mg/l 23 mg/l	1
* Subsubtota				0		o mgy t	JE mg/it	25 mg/ C	13
	- FOD DADAWETED, OUL		11a t						13
2PH00013 05	S FOR PARAMETER: CHLC 2/31/87 Oak Openings		Chlorine, Total Residual		-	•		1 mg/l	1
00 2PH00013 00	5/30/87 Oak Openings	Industrial Park	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	4 mg/l 1 mg/l	1
00 2PH00013 07)1 7/31/87 Oak Openings	Industrial Park	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	4 mg/l 1 mg/l	1
00)1 3/31/87 Oak Openings		Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	4 mg/l 1 mg/l	1
00)1 2/30/87 Oak Openings		Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	4 mg/l 1 mg/l	1
00)1)/31/87 Oak Openings		Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	4 mg/l	1
00	D1	muusti lat Park	cator me, rotat kesiddat	0	0	0 mg/l	0 mg/l	1 mg/l 4 mg/l	I
* Subsubtota	<i>i</i> , "								6
	FOR PARAMETER: FEC								
00	5/31/87 Oak Openings)1	Industrial Park	Fecal Coliform	0	0	0 SU	1000 SU 9402 SU	2000 SU 17000 SU	1
2PH00013 06	5/30/87 Oak Openings	Industrial Park	Fecal Coliform	0	0	0 SU	1000 SU 23263 SU	2000 SU 97000 SU	1
2PH00013 01 0(7/31/87 Oak Openings	Industrial Park	Fecal Coliform	0	0	0 SU	1000 su 3946 su	2000 SU 4500 SU	1
2PH00013 08	8/31/87 Oak Openings	Industrial Park	Fecal Coliform	0	0	0 50	1000 SU 8878 SU	2000 SU	1
2PH00013 09	/30/87 Oak Openings	Industrial Park	Fecal Coliform	-	0		1000 SU	43200 SU 2000 SU	1
2PH00013 10	/31/87 Oak Openings	Industrial Park	Fecal Coliform	0	•	0 SU	7807 SU 1000 SU	24000 SU 2000 SU	1
2PH00013 05	/31/88 Oak Openings	Industrial Park	Fecal Coliform	0	0	0 SU	54034 SU 1000 SU	167000 SU 2000 SU	1
00 2PH00013 00)1 5/30/88 Oak Openings	Industrial Park	Fecal Coliform	0	0	0 SU	130000: SU 1000 SU	130000 SU 2000 SU	1
0(Subsubtota *				0	0	O SU	20325 SU	42500 SU	•
									8
* VIOLATIONS	5 FOR PARAMETER: OXYI 1/31/87 Oak Openings	GEN, DISSOLVED	Oxygen, Dissolved			5 mg/l			1
00	2/28/87 Oak Openings			0	0	4 mg/l	0 mg/l	0 mg/l	
00	D1		Oxygen, Dissolved	0	0	5 mg/l 2 mg/l	0 mg/l	0 mg/l	1
2PH00013 03	3/31/87 Oak Openings	INGUSTRIAL PARK	Oxygen, Dissolved			5 mg/l			1
		· · ·	:						

Page No. 1-26

NPDES PERMIT VIOLATIONS, 1987-8 سمر.

TALLY

NPDES	DATE &
PERMIT	OUTFALL
NUMBER	NUMBER

.

NAME OF PARAMETER VIOLATED

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC TALLY in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured

2PH00013	001 04/30/87 Oak Openings Industrial Park	Oxygen, Dissolved	0	0	1 mg/l 5 mg/l	0 mg/l	0 mg/l	1
	001		0	0	3 mg/l	0 mg/l	0 mg/l	4
2PH00013	05/31/87 Oak Openings Industrial Park	Oxygen, Dissolved	0	0	5 mg/l 3 mg/l	0 mg/l	0 mg/l	•
2PH00013	06/30/87 Oak Openings Industrial Park 001	Oxygen, Dissolved	0	0	5 mg/l 2 mg/l	0 mg/l	0 mg/l	1
2PH00013	07/31/87 Oak Openings Industrial Park	Oxygen, Dissolved	0	0	5 mg/l 2 mg/l	0 mg/l	0 mg/l	1
2PH00013	08/31/87 Oak Openings Industrial Park	Oxygen, Dissolved	ů.	0	5 mg/l			1
2PH00013	09/30/87 Oak Openings Industrial Park	Oxygen, Dissolved	•		2 mg/l 5 mg/l	0 mg/l	0 mg/l	1
2PH00013	001 10/31/87 Oak Openings Industrial Park	Oxygen, Dissolved	0	0	1 mg/l 5 mg/l	0 mg/l	0 mg/l	1
2PH00013	001 11/30/87 Oak Openings Industrial Park	Oxygen, Dissolved	0	0	2 mg/l 5 mg/l	0 mg/l	0 mg/l	1
2PH00013	001 12/31/87 Oak Openings Industrial Park	Oxygen, Dissolved	0	0	1 mg/l 5 mg/l	0 mg/l	0 mg/l	1
	001		0	0	1 mg/l	0 mg/l	0 mg/l	4
2PH00013	01/31/88 Oak Openings Industrial Park	Oxygen, Dissolved	0	0	5 mg/l 5 mg/l	0 mg∕l	0 mg/l	I
2PH00013	02/29/88 Oak Openings Industrial Park 001	Oxygen, Dissolved	0	0	5 mg/l 4 mg/l	0 mg∕l	0 mg/l	1
2PH00013	03/31/88 Oak Openings Industrial Park 001	Oxygen, Dissolved	0	0	5 mg/l 4 mg/l	0 mg∕l	0 mg/l	1
2PH00013	05/31/88 Oak Openings Industrial Park	Oxygen, Dissolved	0	0	5 mg/l 4 mg/l	0 mg/l	0 mg/l	1
2PH00013	06/30/88 Oak Openings Industrial Park	Oxygen, Dissolved	•		5 mg/l			1
2PH00013	001 07/31/88 Oak Openings Industrial Park	Oxygen, Dissolved	0	0	4 mg/l 5 mg/l	0 mg/l	0 mg/l	1
* Subsubt	oul. total *		0	0	3 mg/l	0 mg/l	0 mg/l	
								18
	IONS FOR PARAMETER: SOLIDS, TOTAL SUSPEN	DED						_
2PH00013	01/31/87 Oak Openings Industrial Park 001	Solids, Total Suspended	818	12	0	12 mg/l	18 mg/l	1
2PH00013	02/28/87 Oak Openings Industrial Park		12	18	0 11071	37 ma/l	60 mq/l	
	001	Solids, Total Suspended	12 818 34	18 12 118	0 mg/l 0 mg/l	37 mg/l 12 mg/l 117 mg/l	60 mg/l 18 mg/l 604 mg/l	1
2PH00013	001 03/31/87 Oak Openings Industrial Park	Solids, Total Suspended Solids, Total Suspended	818 34 818	12 118 12	0 mg/l	12 mg/l 117 mg/l 12 mg/l	18 mg/l 404 mg/l 18 mg/l	1 1
2PH00013 2PH00013	001		818 34 818 11 818	12 118 12 23 12	0 mg/l 0 mg/l	12 mg/l 117 mg/l 12 mg/l 34 mg/l 12 mg/l	18 mg/l 404 mg/l 18 mg/l 70 mg/l 18 mg/l	1 1
	001 03/31/87 Oak Openings Industrial Park 001	Solids, Total Suspended	818 34 818 11	12 118 12 23 12 20 12	0 mg/l	12 mg/l 117 mg/l 12 mg/l 34 mg/l 12 mg/l 30 mg/l 12 mg/l	18 mg/l 404 mg/l 18 mg/l 70 mg/l 18 mg/l 60 mg/l 18 mg/l	1
2PH00013 2PH00013	001 03/31/87 Oak Openings Industrial Park 001 04/30/87 Oak Openings Industrial Park 001 05/31/87 Oak Openings Industrial Park 001	Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended	818 34 818 11 818 8 8 818 11	12 118 12 23 12 20 12 39	0 mg/l 0 mg/l	12 mg/l 117 mg/l 12 mg/l 34 mg/l 12 mg/l 30 mg/l 12 mg/l 63 mg/l	18 mg/l 404 mg/l 18 mg/l 70 mg/l 18 mg/l 60 mg/l 18 mg/l 210 mg/l	1
2PH00013 2PH00013 2PH00013	001 03/31/87 Oak Openings Industrial Park 001 04/30/87 Oak Openings Industrial Park 001 05/31/87 Oak Openings Industrial Park 001 06/30/87 Oak Openings Industrial Park 001	Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended	818 34 818 11 818 818 818 11 818 2	12 118 12 23 12 20 12 39 12 39 4	O mg/l O mg/l O mg/l	12 mg/l 117 mg/l 12 mg/l 34 mg/l 12 mg/l 30 mg/l 12 mg/l 63 mg/l 12 mg/l 13 mg/l	18 mg/l 404 mg/l 18 mg/l 70 mg/l 18 mg/l 60 mg/l 18 mg/l 210 mg/l 18 mg/l 21 mg/l	1 1 1
2PH00013 2PH00013 2PH00013 2PH00013	001 03/31/87 Oak Openings Industrial Park 001 04/30/87 Oak Openings Industrial Park 001 05/31/87 Oak Openings Industrial Park 001 06/30/87 Oak Openings Industrial Park 001	Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended	818 34 818 11 818 818 11 818 2 818 6	12 118 12 23 12 20 12 39 12 4 12 4 16	0 mg/l 0 mg/l 0 mg/l 0 mg/l	12 mg/l 117 mg/l 12 mg/l 34 mg/l 30 mg/l 12 mg/l 63 mg/l 63 mg/l 12 mg/l 13 mg/l 30 mg/l	18 mg/l 404 mg/l 18 mg/l 70 mg/l 18 mg/l 60 mg/l 18 mg/l 210 mg/l 210 mg/l 18 mg/l 18 mg/l 18 mg/l	1 1 1 1
2PH00013 2PH00013 2PH00013 2PH00013 2PH00013	001 03/31/87 Oak Openings Industrial Park 001 04/30/87 Oak Openings Industrial Park 001 05/31/87 Oak Openings Industrial Park 001 08/31/87 Oak Openings Industrial Park 001 09/30/87 Oak Openings Industrial Park 001	Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended	818 34 818 11 818 818 11 818 2 818 6 818 2 818 6 818 2	12 118 12 23 12 20 12 39 12 4 12 16 12 2	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	12 mg/l 117 mg/l 12 mg/l 12 mg/l 30 mg/l 12 mg/l 63 mg/l 13 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l	18 mg/l 404 mg/l 18 mg/l 70 mg/l 18 mg/l 60 mg/l 18 mg/l 210 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l	1 1 1
2PH00013 2PH00013 2PH00013 2PH00013	001 03/31/87 Oak Openings Industrial Park 001 04/30/87 Oak Openings Industrial Park 001 05/31/87 Oak Openings Industrial Park 001 06/30/87 Oak Openings Industrial Park 001	Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended	818 34 818 11 818 818 11 818 2 818 6 818 2 818 9	12 118 12 23 12 20 12 39 12 4 16 12 20	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	12 mg/l 117 mg/l 12 mg/l 12 mg/l 30 mg/l 12 mg/l 63 mg/l 13 mg/l 13 mg/l 12 mg/l 13 mg/l 12 mg/l 30 mg/l	18 mg/l 404 mg/l 18 mg/l 70 mg/l 18 mg/l 60 mg/l 18 mg/l 210 mg/l 18 mg/l 21 mg/l 18 mg/l 18 mg/l 18 mg/l	1 1 1 1
2PH00013 2PH00013 2PH00013 2PH00013 2PH00013	001 03/31/87 Oak Openings Industrial Park 001 04/30/87 Oak Openings Industrial Park 001 05/31/87 Oak Openings Industrial Park 001 08/31/87 Oak Openings Industrial Park 001 09/30/87 Oak Openings Industrial Park 001	Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended	818 34 818 11 818 818 11 818 2 818 6 818 2 818 818 2 818	12 118 12 23 12 20 12 39 12 39 12 4 12 12 12 12	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	12 mg/l 117 mg/l 12 mg/l 34 mg/l 30 mg/l 30 mg/l 63 mg/l 13 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l	18 mg/l 404 mg/l 18 mg/l 70 mg/l 18 mg/l 210 mg/l 210 mg/l 18 mg/l 21 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l	1 1 1
2PH00013 2PH00013 2PH00013 2PH00013 2PH00013 2PH00013	001 03/31/87 Oak Openings Industrial Park 001 04/30/87 Oak Openings Industrial Park 001 05/31/87 Oak Openings Industrial Park 001 08/31/87 Oak Openings Industrial Park 001 09/30/87 Oak Openings Industrial Park 001 10/31/87 Oak Openings Industrial Park 001 11/30/87 Oak Openings Industrial Park 001 11/30/87 Oak Openings Industrial Park 001 12/31/87 Oak Openings Industrial Park	Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended	818 34 818 11 818 818 2 818 6 818 6 818 2 818 9 818 2 818 2 818 2 818	12 118 12 23 12 20 12 39 12 4 2 16 12 20 20 20 20 20 20 20 20 20 20 20 20 20	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	12 mg/l 117 mg/l 12 mg/l 34 mg/l 30 mg/l 32 mg/l 32 mg/l 33 mg/l 13 mg/l 30 mg/l 13 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l	18 mg/l 404 mg/l 18 mg/l 18 mg/l 60 mg/l 18 mg/l 210 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 19 mg/l 132 mg/l 132 mg/l 18 mg/l 132 mg/l 18 mg/l 18 mg/l	1 1 1 1 1
2PH00013 2PH00013 2PH00013 2PH00013 2PH00013 2PH00013 2PH00013	001 03/31/87 Oak Openings Industrial Park 001 04/30/87 Oak Openings Industrial Park 001 05/31/87 Oak Openings Industrial Park 001 08/31/87 Oak Openings Industrial Park 001 09/30/87 Oak Openings Industrial Park 001 10/31/87 Oak Openings Industrial Park 001 10/31/87 Oak Openings Industrial Park 001 11/30/87 Oak Openings Industrial Park 001	Solids, Total Suspended Solids, Total Suspended	818 34 818 11 818 818 11 818 2 818 6 818 2 818 9 818 2 818 2 818 2 818 2 818 2 818 2 818 2 818 2	12 118 12 23 12 20 12 39 14 12 12 20 12 39 14 12 20 20 20 20 20 20 20 20 20 20 20 20 20	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	12 mg/l 117 mg/l 12 mg/l 34 mg/l 30 mg/l 30 mg/l 63 mg/l 13 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l 12 mg/l	18 mg/l 404 mg/l 18 mg/l 70 mg/l 18 mg/l 60 mg/l 18 mg/l 210 mg/l 18 mg/l 21 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 29 mg/l	1 1 1 1 1 1

NPDES PERMIT NUMBER	DATE & OUTFALL NUMBER	NAME OF FAC	ILITY/OWNER		NAME OF PARAM	ETER VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
2PH00013 2PH00013 2PH00013 2PH00013 2PH00013 * Subsubt	001 03/31/88 001 04/30/88 001 05/31/88 001 06/30/88 001 otal *	Oak Opening Oak Opening Oak Opening	s Industrial s Industrial s Industrial s Industrial s Industrial	Park Park Park	Solids, Total Solids, Total Solids, Total Solids, Total Solids, Total	Suspended Suspended Suspended	3 818 3 818 3 818 3 818 26 818 35	4 12 6 12 5 12 3 12 64 12 45	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	14 mg/l 12 mg/l 17 mg/l 12 mg/l 15 mg/l 13 mg/l 13 mg/l 13 mg/l 12 mg/l 134 mg/l 174 mg/l	19 mg/l 18 mg/l 18 mg/l 28 mg/l 18 mg/l 15 mg/l 18 mg/l 18 mg/l 18 mg/l 18 mg/l 15 mg/l	1 1 1 1 1
** Subtot		00000 20100	~~/									62
* VIOLATI	ONS FOR PA 03/31/87 001 06/30/87 08/31/87 001 12/31/87 001 06/30/88 001	PDES: 2PH00 RAMETER: BO Oak Terrace Oak Terrace Oak Terrace Oak Terrace Oak Terrace	D 5		BOD 5 BOD 5 BOD 5 BOD 5 BOD 5 BOD 5		4 13 4 14 4 39 4 9	6 51 6 7 6 47 6 154 6 0	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	10 mg/l 47 mg/l 10 mg/l 8 mg/l 10 mg/l 38 mg/l 10 mg/l 10 mg/l 24 mg/l	15 mg/l 180 mg/l 15 mg/l 17 mg/l 15 mg/l 128 mg/l 15 mg/l 15 mg/l 15 mg/l 1 mg/l	1 1 1 1
	05/31/87 001 06/30/87 001 07/31/87 001 09/30/87 001 10/31/87 001 10/31/87 001 05/31/88 001 06/30/88 001 07/31/88 001	RAMETER: CH Oak Terrace Oak Terrace Oak Terrace Oak Terrace Oak Terrace Oak Terrace Oak Terrace Oak Terrace Oak Terrace			AL Chlorine, Tot Chlorine, Tot Chlorine, Tot Chlorine, Tot Chlorine, Tot Chlorine, Tot Chlorine, Tot Chlorine, Tot	al Residual al Residual al Residual al Residual al Residual al Residual al Residual	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l 0 mg/l	1 mg/l 4 mg/l 1 mg/l 2 mg/l	5 1 1 1 1 1 1 1 9
2PH00014	05/31/87 001 06/30/87	RAMETER: FE Oak Terrace Oak Terrace			Fecal Colifor Fecal Colifor		0	0	0 SU	1000 SU 1020 SU 1000 SU NPDES PERMI	2000 SU 2000 SU 2000 SU F VIOLATIONS,	1 1

-

<u>....</u>

NPDES DATE & NAME OF FACILITY/OWNER NAME OF PARAMETER VIOLATED AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC TALLY in kg/day PERMIT OUTFALL in kg/day NUMBER NUMBER Lim/Measured Lim/Measured Lim/Measured Lim/Measured 7829 SU 001 0 ۵ 0 SU 20600 SU 2PH00014 1000 SU 2000 SU 07/31/87 Oak Terrace Fecal Coliform 1 0 n 0 SU 1166 SU 800 SU UU, 1000 SU 2000 SU 2PH00014 08/31/87 Oak Terrace Fecal Coliform 1 0 SU Ö 0 1786 SU 106000 SU 001 1000 SU 2000 SU 2PH00014 09/30/87 Oak Terrace Fecal Coliform 1 0 0 1261 SU 0 SU 5900 SU 001 1000 SU 2000 SU 2PH00014 10/31/87 Oak Terrace Fecal Coliform 1 001 0 0 0 SU 1784 SU 12000 SU * Subsubtotal . * 6 * VIOLATIONS FOR PARAMETER: OXYGEN, DISSOLVED 2PH00014 01/31/87 Oak Terrace Oxygen, Dissolved 5 mg/l 0 0 001 3 mg/ 0 mg/l0 mg/l2PH00014 02/28/87 Oak Terrace Oxygen, Dissolved 1 mg/l 001 0 0 3 mg/l 0 ma/l0 mg/l2PH00014 03/31/87 Oak Terrace Oxygen, Dissolved 5 mg/l 001 0 Û 2 mg/l 0 mg/l0 mg/l2PH00014 04/30/87 Oak Terrace Oxygen, Dissolved 5 mg/l 0 0 0 mg/l 001 0 mg/l 3 mg/l 2PH00014 05/31/87 Oak Terrace Oxygen, Dissolved 5 mg/l 0 0 001 mg/l 0 mg/l 0 mg/l2PH00014 06/30/87 Oak Terrace 1 Oxygen, Dissolved mg/l 0 0 0 mg/l0 mg/l001 mg/l 2PH00014 07/31/87 Oak Terrace Oxygen, Dissolved 1 5 mg/l Û n 0 ma/l 0 mg/l001 mg/l 2PH00014 08/31/87 Oak Terrace 1 Oxygen. Dissolved 5 mg/l ٥ Û 001 0 mg/l 0 mg/l 4 mg/l mg/l 2PH00014 09/30/87 Oak Terrace 5 1 Oxygen, Dissolved 0 0 0 mg/l 0 ma/l001 4 mg/ 2PH00014 12/31/87 Oak Terrace 1 Oxygen, Dissolved 5 mg/ 001 0 0 2 0 mg/l0 mg/l_mg/l 2PH00014 02/29/88 Oak Terrace Oxygen, Dissolved 5 mg/l 1 0 0 0 mg/l 0 mg/l001 4 mg/l 2PH00014 07/31/88 Oak Terrace Oxygen, Dissolved 5 mg/l 1 0 ۵ 001 3 mg/l 0 mg/l 0 mg/l* Subsubtotal * 12 * VIOLATIONS FOR PARAMETER: PH

2PH00014 02/28/87 Oak Terrace рH 7 SU 9 SU 0 0 0 SU 7 001 6 SU SU 2PH00014 09/30/87 Oak Terrace 7 SU 9 SU pН 0 0 6 SU 0 SU 8 SU 001 10/31/87 Oak Terrace 9 SU 7 SU 2PH00014 bН 7 SU 001 0 0 6 SU 0 SU * Subsubtotal * * VIOLATIONS FOR PARAMETER: SOLIDS, TOTAL SUSPENDED 12 mg/l 2PH00014 03/31/87 Oak Terrace Solids, Total Suspended 5 18 mg/l 510 mg/l 37 145 132 mg/l 001 0 mg/l5 2PH00014 06/30/87 Oak Terrace 12 mg/l 18 mg/l Solids, Total Suspended

7 3 001 0 mg/l 8 mg/l 2PH00014 08/31/87 Oak Terrace 12 mg/l Solids, Total Suspended 5 507 133 001 0 mg/l359 mg/l 12 mg/l 2PH00014 12/31/87 Oak Terrace Solids, Total Suspended 5

Page No. I-29

NPDES PERMIT VIOLATIONS, 1987-8

18 mg/L

18 mg/l

18 mg/l

1368 mg/l

1

1

1

3

1

1

1

PERMIT OUT	E & NAME OF FACILITY/OWNER Fall Ber	NAME OF PARAMETER VIOLATED	in kg/day	MAX QUANTITY in kg/day Lim/Measured		AVG CONC Lim/Measured	MAX CONC Lim/Measured	TALLY
001 2PH00014 04/ 001	29/88 Oak Terrace 30/88 Oak Terrace 30/88 Oak Terrace *	Solids, Total Suspended Solids, Total Suspended Solids, Total Suspended	256 5 4 5 4 5 4 7	1019 7 13 7 8 7 2	0 mg/l 0 mg/l 0 mg/l 0 mg/l	640 mg/l 12 mg/l 13 mg/l 12 mg/l 6 mg/l 12 mg/l 120 mg/l	2540 mg/l 18 mg/l 43 mg/l 18 mg/l 10 mg/l 18 mg/l 7 mg/l	1 1 7 42
	FOR NPDES: 2PK00000 For parameter: Chlorine, total resid	1141						46
2PK00000 05/ 001 * Subsubtotal	31/87 Maumee River WWTP	Chlorine, Total Residual	0	0	0 mg/l	0 mg/l	1 mg/l 5 mg/l	1
* VIOLATIONS 2PK00000 05/ 001 2PK00000 06/ 001 * Subsubtotal	FOR PARAMETER: FECAL COLIFORM 31/88 Maumee River WWTP 30/88 Maumee River WWTP *	Fecal Coliform Fecal Coliform	0 0	0 0	O SU O SU	1000 SU 253 SU 1000 SU 267 SU	2000 SU 54327 SU 2000 SU 61111 SU	1 1 1 2
** Subtotal * ** VIOLATIONS	FOR NPDES: 2PS00002							3
2P\$00002 01/ 001 2P\$00002 02/ 001 2P\$00002 03/ 001 2P\$00002 04/ 001 2P\$00002 05/ 001 2P\$00002 05/ 001 2P\$00002 06/ 001 2P\$00002 06/ 001 2P\$00002 08/ 001 2P\$00002 09/ 001 2P\$00002 11/ 001 2P\$00002 11/ 001 2P\$00002 01/ 001 2P\$00002 01/ 001 2P\$00002 02/ 001 2P\$00002 02/ 001 2P\$00002 02/ 001 2P\$00002 02/ 001 2P\$00002 02/ 001	FOR PARAMETER: BOD 5 31/87 Woodside Terrace 28/87 Woodside Terrace 31/87 Woodside Terrace 30/87 Woodside Terrace 31/87 Woodside Terrace 30/87 Woodside Terrace 31/87 Woodside Terrace 31/87 Woodside Terrace 30/87 Woodside Terrace 30/87 Woodside Terrace 31/87 Woodside Terrace 31/87 Woodside Terrace 31/87 Woodside Terrace 31/87 Woodside Terrace 31/88 Woodside Terrace 29/88 Woodside Terrace	 BOD 5 	363732203731313731363633333938383	57511 515 5253 57514 565552 1515 1515 1515 1515 1515 1515 15	0 mg/l 0 mg/l	10 mg/l 18 mg/l 10 mg/l 10 mg/l 10 mg/l 27 mg/l 20 mg/l 20 mg/l 20 mg/l 10 mg/l	15 mg/l 20 mg/l 15 mg/l 29 mg/l 41 mg/l 41 mg/l 36 mg/l 33 mg/l 15 mg/l	1 1 1 1 1 1 1 1 1 1 1 1 1 1

Page No. 1-30

NPDES PERMIT NUMBER

DATE & NAME OF FACILITY/OWNER Outfall Number

NAME OF PARAMETER VIOLATED

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured TALLY

001 2PS00002 04/30/88 Woodside Terrace	BOD 5	9 3	13 5	0 mg/l	25 mg/l 10 mg/l	35 mg/l 15 mg/l	1
001 2PS00002 05/31/88 Woodside Terrace	BOD 5	, ,	26	0 mg/l	24 mg/l 10 mg/l	70 mg/l 15 mg/l	1
001		ş	ž	0 mg/l	14 mg/l	20 mg/l	
001	BOD 5	3	5	0 mg/l	10 mg/l 8 mg/l	15 mg/l 14 mg/l	1
* Subsubtotal *							18
* VIOLATIONS FOR PARAMETER: FECAL COLI 2PS00002 05/31/87 Woodside Terrace	FORM Fecal Coliform	<u>^</u>	<u>^</u>	A	1000 SU	2000 SU	1
001 2PS00002 06/30/87 Woodside Terrace	Fecal Coliform	0	0	0 SU	2907 SU 1000 SU	6000 SU 2000 SU	1
001 2PS00002 07/31/87 Woodside Terrace	Fecal Coliform	0	0	0 SU	14091 SU 1000 SU	50000 SU 2000 SU	1
001 2PS00002 08/31/87 Woodside Terrace	Fecal Coliform	0	0	0 SU	20596 SU 1000 SU	25600 SU 2000 SU	1
001 2PS00002 09/30/87 Woodside Terrace	Fecal Coliform	. 0	0	0 SU	18886 SU 1000 SU	20175 SU 2000 SU	1
001 2PS00002 10/31/87 Woodside Terrace	Fecal Coliform	• 0	0	0 SU	13500 SU 1000 SU	17600 SU 2000 SU	1
001 2PS00002 05/31/88 Woodside Terrace	Fecal Coliform	.t	0	0 SU	3613 SU 1000 SU	12400 SU 2000 SU	1
2PS00002 07/31/88 Woodside Terrace		. O	0	0 SU	17110 SU	23200 SU	1
001	Fecal Coliform	0	0	0 SU	1000 SU 15111 SU	2000 SU 19000 SU	I
* Subsubtotal *					:		8
* VIOLATIONS FOR PARAMETER: OXYGEN, DI 2PS00002 01/31/87 Woodside Terrace	SSOLVED Oxygen, Dissolved			5 mg/l			1
001 2PS00002 02/28/87 Woodside Terrace	Oxygen, Dissolved	0	0	1 mg/l 5 mg/l	0 mg/l	0 mg/l	1
001 2PS00002 03/31/87 Woodside Terrace	Oxygen, Dissolved	0	0	1 mg/l 5 mg/l	0 mg/l	0 mg/l	1
001 2PS00002 04/30/87 Woodside Terrace	• • •	0	0	1 mg/l	0 mg/l	0 mg∕l	4
001	Oxygen, Dissolved	0	0	5 mg/l 1 mg/l	0 mg/l	0 mg/l	•
2PS00002 05/31/87 Woodside Terrace 001	Oxygen, Dissolved	0	0	5 mg/l 0 mg/l	0 mg/l	0 mg/l	1
2PS00002 06/30/87 Woodside Terrace 001	Oxygen, Dissolved	0	0	5 mg/l 1 mg/l	0 mg/l	0 mg/l	1
2PS00002 07/31/87 Woodside Terrace 001	Oxygen, Dissolved	Û	0	5 mg/l 1 mg/l	0 mg/l	0 mg/l	1
2PS00002 08/31/87 Woodside Terrace	Oxygen, Dissolved	О	0	5 mg/l			1
2PS00002 09/30/87 Woodside Terrace	Oxygen, Dissolved	•	-	1 mg/l 5 mg/l	0 mg/t	0 mg/l	1
001 2PS00002 10/31/87 Woodside Terrace	Oxygen, Dissolved	0	0	1 mg/l 5 mg/l	0 mg/l	0 mg/l	1
001 2PS00002 11/30/87 Woodside Terrace	Oxygen, Dissolved	0	0	0 mg/l 5 mg/l	0 mg/l	0 mg/l	1
001 2PS00002 12/31/87 Woodside Terrace	Oxygen, Dissolved	0	0	0 mg/l 5 mg/l	0 mg/l	0 mg/l	1
001 2PS00002 01/31/88 Woodside Terrace		0	0	0 mg/l	0 mg/l	0 mg/l	•
001	Oxygen, Dissolved	0	0	5 mg/l 0 mg/l	0 mg/l	0 mg/l	1
2PS00002 02/29/88 Woodside Terrace 001	Oxygen, Dissolved	0	0	5 mg/l 1 mg/l	0 mg/l	0 mg/l	1
2PS00002 03/31/88 Woodside Terrace	Oxygen, Dissolved			5 mg/l			1

Page No. I-31

NPDES PERMIT VIOLATIONS, 1987-8

.

NPDES Permit	DATE & OUTFALL	NAME	OF	FACILITY/OWNER	
NUMBER	NUMBER				

NAME OF PARAMETER VIOLATED

AVG QUANTITY MAX QUANTITY MIN CONC AVG CONC MAX CONC in kg/day in kg/day Lim/Measured Lim/Measured Lim/Measured Lim/Measured TALLY

001 2P\$00002 04/30/88 Woodside Terrace	Oxygen, Dissolved	0	0	0 mg/l 5 mg/l	0 mg∕l	0 mg/l	1
001 2PS00002 05/31/88 Woodside Terrace	Oxygen, Dissolved	0	0	0 mg/l	0 mg/l	0 mg/l	•
001 2PS00002 07/31/88 Woodside Terrace		0	0	0 mg/l	0 mg/l	0 mg/l	1 4
001 Subsubtotal *	Oxygen, Dissolved	0	0	5 mg/l 0 mg/l	0 mg/t	0 mg/l	1
							18
* VIOLATIONS FOR PARAMETER: SOLIDS, TOTAL SUS 2PS00002 01/31/87 Woodside Terrace	SPENDED Solids, Total Suspended	4	6		12 mg/L	18 mg/l	1
001 2PS00002 02/28/87 Woodside Terrace	Solids, Total Suspended	12	17 6	0 mg/l	35 mg/l 12 mg/l	48 mg/l 18 mg/l	1
001 2PS00002 03/30/87 Woodside Terrace	Solids, Total Suspended	10	15 6	0 mg/l	27 mg/l 12 mg/l	42 mg/l 18 mg/l	1
001 2PS00002 04/30/87 Woodside Terrace	Solids, Total Suspended	10	15 6	0 mg/l	28 mg/l 12 mg/l	40 mg/l	1
2PS00002 05/31/87 Woodside Terrace		7	14	0 mg/l	19 mg/l	18 mg/l 38 mg/l	
001	Solids, Total Suspended	8	6 15	0 mg/l	12 mg/l 21 mg/l	18 mg/l 41 mg/l	1
2PS00002 06/30/87 Woodside Terrace 001	Solids, Total Suspended	47	6 9	0 mg/l	12 mg/l 20 mg/l	18 mg/l 25 mg/l	1
2PS00002 08/31/87 Woodside Terrace 001	Solids, Total Suspended	47	6 8	0 mg/l	12 mg/l 17 mg/l	18 mg/l 21 mg/l	1
2PS00002 09/30/87 Woodside Terrace	Solids, Total Suspended	4	6 11	0 mg/l	12 mg/l 16 mg/l	18 mg/l 29 mg/l	1
2PS00002 10/31/87 Woodside Terrace	Solids, Total Suspended	4	6	0 mg/l	12 mg/l 14 mg/l	18 mg/l	1
2PS00002 11/30/87 Woodside Terrace	Solids, Total Suspended	4	6		12 mg/l	25 mg/l 18 mg/l	1
2PS00002 12/31/87 Woodside Terrace	Solids, Total Suspended	4	6	0 mg/l	15 mg/l 12 mg/l	17 mg/l 18 mg/l	1
001 2PS00002 01/31/88 Woodside Terrace	Solids, Total Suspended	6 4	9 6	0 mg/l	16 mg/l 12 mg/l	24 mg/l 18 mg/l	1
001 2PS00002 02/29/88 Woodside Terrace	Solids, Total Suspended	8 4	12 6	0 mg/l	22 mg/l 12 mg/l	33 mg/l 18 mg/l	1
001 2PS00002 03/31/88 Woodside Terrace	Solids, Total Suspended	7	14 6	0 mg/l	19 mg/l 12 mg/l	39 mg/l 18 mg/l	1
001 2PS00002 04/30/88 Woodside Terrace	Solids, Total Suspended	8	13 6	0 mg/l	22 mg/l	36 mg/L	4
001		13	16	0 mg/l	12 mg/l 35 mg/l	18 mg/l 43 mg/l	1
2PS00002 05/31/88 Woodside Terrace 001	Solids, Total Suspended	4 10	6 18	0 mg/l	12 mg/l 27 mg/l	18 mg/l 48 mg/l	1
* Subsubtotal *							16
** Subtotal **							60
** VIOLATIONS FOR NPDES: 2PY00000					· .		00
* VIOLATIONS FOR PARAMETER: SOLIDS, TOTAL SUS	SPENDED		x		10		
2PY00000 03/31/88 Centennial Manor 001	Solids, Total Suspended	2	0	0 mg/l	18 mg/l 37 mg/l	0 mg∕l	1
* Subsubtotal *							1
** Subtotal **					:		1
*** Total ***							627
					-		011

Page No. I-32

NPDES PERMIT VIOLATIONS, 1987-8

÷.,

LOWER MAUMEE BASIN

REMEDIAL ACTION PLAN

Volume 1 Investigation Report October, 1988

ACKNOWLEDGMENTS

The Toledo Metropolitan Area Council of Governments would like to acknowledge the members of the Remedial Action Plan Advisory Committee and their alternates for their participation in developing the Investigation Report. This project would have been impossible without their input.

LOWER MAUMEE RIVER

REMEDIAL ACTION PLAN

ADVISORY COMMITTEE

Name

Cecil Adkins

Organization

Name

Organization

Larry Antosch Dale Asmus James Bagdonas Dave Baker **Robert Bickley** 🗸 Sandy Bihn Nelson E. Summit Jeanne Blausey Mark D. Bobal 🖉 Rey Boezi - Tom Bourdo Brice Bowman Milton Boxley Dave Gruet Dan Bryan Carolyn A. Bury Charles Dodge Jean W. Youngen F. Joseph Cory Edwin Hammett John Harbal Jon Drescher Jim Feltman Mike Finkler Thomas Fishbaugh Peter Fraleigh James Kelly Frey Kelly Gadus Larry Gamble Floris T. George Scott Golden Herb Hackenburg Merle Harder **Richard Harmon** Clara Herr **Richard Heyman**

Village of Walbridge Ohio EPA Wood County SWCD City of Perrysburg Heidelberg College Village of Milan City of Oregon City of Clyde Village of Oak Harbor U.S. Coast Guard SeaGate Development Corp. **Toledo Cruise Lines** Ohio Farm Bureau Wood Co. Twp. Assoc. City of Vermilion City of Fremont U.S. EPA - GLNPO City of Fostoria Village of Ottawa Hills City of Maumee Ohio EPA Village of Genoa City of Bowling Green Lake Erie Sport Fishermen Sohio Sandusky County U of T Ottawa Co. Sanitary Engr W. Sister Charter Boat Assoc. Lucas Co. Sanitary Engr Village of Pemberville Ohio Department of Health Village of Weston Village of Elmore Village of Woodville Lucas County Twp. Assoc. Village of North Baltimore

Al Hoag Diana Holt Sue Horvath John F. Jaeger Earl Johnson Mike Johnson Edward Junia William Knack Carl Koebel Mary Ann Koebel **Bill Kurey** George LeBoutillier John McCarthy Max McLaury Wendelle Miller Jennifer O'Donnell John O'Meara Lee Pfouts **Rex Powers** Jim Rickenberg Frank Reynolds **Richard Sargeant** Floyd Schutte Steve Sedam James Seney Gary Silverman Fred Snyder John Topolewski Whit Van Cott Sidney B. Walker **Dave Waltz** Wavne Warren Ronald Webb Mark Weber Jerry Welton **Richard Wenzel** Linda Woggon

Hydra-Matic Soil Conservation Service League of Women Voters Toledo Area Metroparks Ottawa County SWCD Lucas County SWCD The Anderson's Assoc. Yacht Clubs of Toledo Ottawa County Health Dept. Sandusky County Health Dept. U.S. Fish & Wildlife Service Committee of 100 Corps of Engineers City of Port Clinton Village of Lindsey **Ohio Public Interest Campaign** Audubon Society **Toledo Environmental Services** City of Oregon Soil Conservation Service **Ohio Commercial Fish Producers** Eastman & Smith Wood County Sanitary Engineer **Ohio Environmental Council** City of Sylvania Bowling Green State Univ. Sea Grant **Doehler-Jarvis Castings** City of Toledo ASCS **Ducks Unlimited** Ohio DNR Village of Luckey Village of Whitehouse City of Luna Pier Lucas County Health Dept. Toledo Chamber of Commerce

PREFACE

INVESTIGATION REPORT

The *Investigation Report* on the Lower Maumee River Basin is the supporting documentation that identifies the environmental problems and the water and related uses that are impaired as a result of the problems. It also identifies the known sources of the pollutants. This document is Volume I, the first of two phases in the development of <u>the</u> Remedial Action Plan (RAP).

The Maumee Basin AOC addressed in this document, has been identified as the area extending along the Maumee River from the Bowling Green water intake to the Maumee Bay, including the entire bay and nearshore waters from the Michigan state line to Crane Creek State Park in Ohio. The area includes direct drainage into these waters that are within Lucas, Ottawa and Wood Counties. This includes Swan Creek, Ottawa River (Ten Mile Creek), Duck Creek, Otter Creek, Cedar Creek, Grassy Creek, and Crane Creek. Figure 1 is a map of the area.

The AOC is an area of water quality impacts. In some cases, however, the sources of these impacts are outside of the Lower Maumee River boundaries. This is particularly true of the agricultural sources. Therefore, implementation of the RAP must not be limited to the AOC's boundaries, if significant water quality improvements are to be achieved. The focus of this document is on the Lower Maumee River Basin.

First, this report discusses existing water uses and includes current water quality and sediment quality data. It also describes intensive or short-term monitoring surveys which have occurred in the RAP area along with an analysis of the water quality and sediment quality data.

Secondly, this report describes ten different water pollution sources within the RAP area and the impacts of each of these sources. These include phosphorus sources, NPDES wastewater discharge permits for industrial and municipal sectors, package treatment plants, agricultural runoff, open water disposal of dredged materials, urban stormwater, home sewage disposal, active and closed landfills/dumpsites and pits, ponds and lagoons, and atmospheric deposition related to acid rain.

Lastly, key tables and maps are included with this document to assist the reader in reviewing the information. A glossary is included which defines various terms and agencies found within this document. The appendices have been printed as a separate document and are available upon request to TMACOG.

More than a hundred persons have had input into the preparation of this first phase work. The 74 member Remedial Action Plan Advisory Committee subdivided itself into six major subcommittees, bringing other persons into the process. These subcommittees included: Water Quality and Water Uses, Dredge Disposal, Agricultural Runoff, Home Sewage Disposal, Landfills and Dumps, and Public and Industrial Dischargers.

TMACOG assumes responsibility for the accuracy of this Investigation Report. Therefore, any errors or omissions should be directed to TMACOG.

Lower Maumee Basin

Remedial Action Plan

Volume 1 Investigation Report

October, 1988

Toledo Metropolitan Area Council of Governments 123 N. Michigan Ave. Toledo, OH 43624-1996

[419] 241-9155

This document was prepared by the Toledo Metropolitan Area Council of Governments with funding from member local governments and was financed in part by a grant from the U.S. Environmental Protection Agency, through the Ohio Environmental Protection Agency.

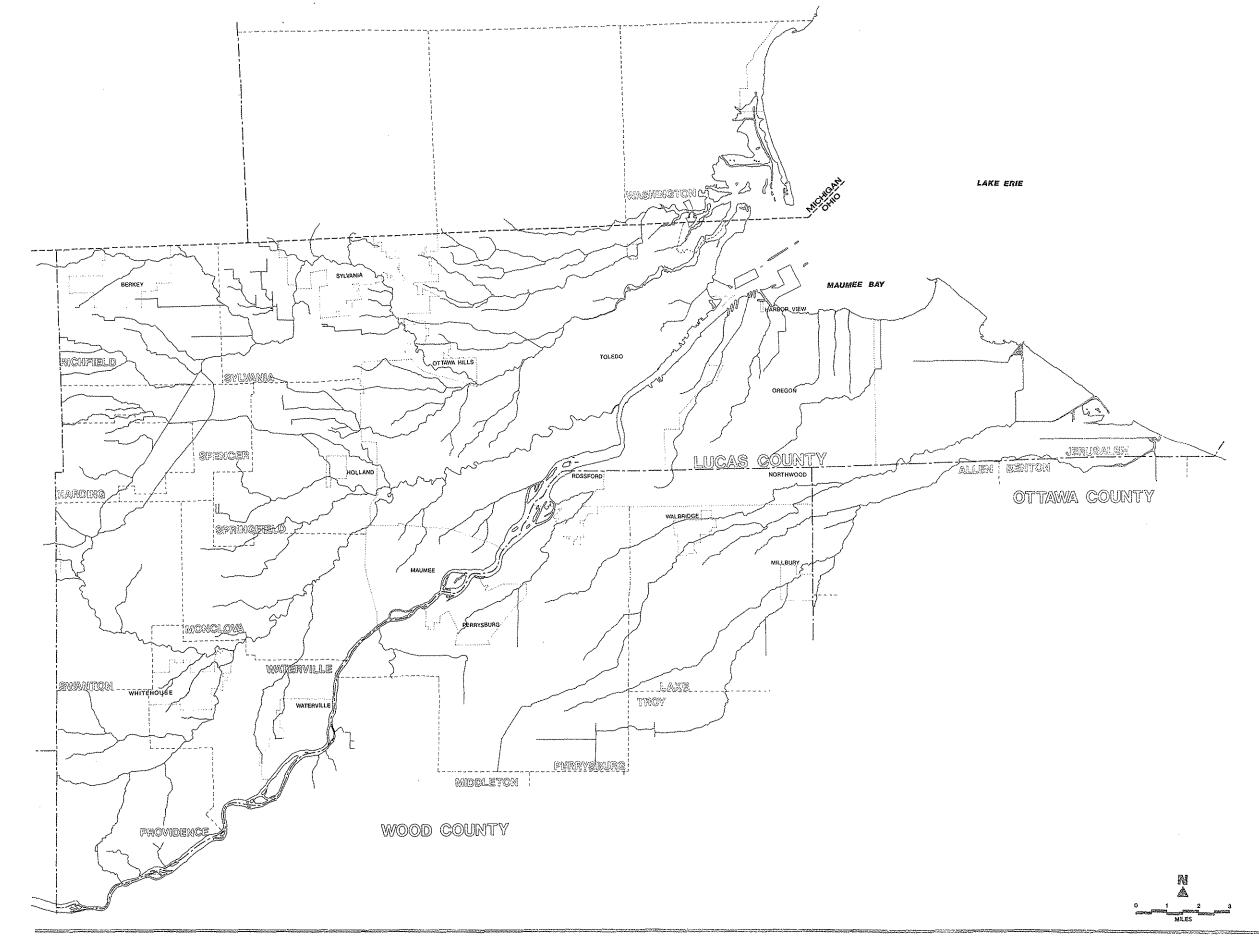
TABLE OF CONTENTS

ACKNOWLEDGMENT	S	
INTRODUCTION		2
MAUMEE BASIN:	DESCRIPTION AND USES	4
STREAM SEGMENT	S OF THE MAUMEE RAP AREA	4
EXISTING WATE	R USES	9
Public	Water Supply	9
ť	Oregon	9
	Toledo	9
1	Waterville	10
	Bowling Green	10
,		11
Sport	and Commercial Fishing	13
Commer		20
Recrea		24
	Natural Areas	24
	Lake Erie and Maumee Bay	25
	Lake Life and Haumee Day	25
	Maumee River	20
	Ottawa River	
	Swan Creek.	20
	Coastal and Estuarine Marshes	21
-	STANDARDS	32
EXISTING WATE		35
ON-GOI	NG MONITORING PROGRAMS.	35
	Toledo Environmental Services Division Data	35
	US Geological Survey Data	43
	Ohio State University CLEAR Data	43
	Ohio EPA 305b Water Quality Inventories	43
	Heidelberg College River Studies Lab Data	44
INTENS	SIVE OR SHORT-TERM MONITORING SURVEYS	44
	Maumee Basin BWQR Data	44
	Corps of Engineers: Harbor Sediment Analyses	55
	Facilities Plans.	57
	Lucas County Facilities Plan Data	57
	Toledo Facilities Plan.	59
	Oregon Facilities Plan Data	60
	Luckey Facilities Plan	60
	Maumee CSO Study Data	60
	TMACOC 200 Dian Data	60
	TMACOG 208 Plan Data	20
UATED	Mainty Data analyctc	61
WAICK	QUALITY DATA ANALYSIS	01
	Ioledo Environmental Services Data	01
	Swan Creek	01
	Tenmile Creek/Ottawa River	62
	Maumee River	62
	Tributaries	63
	Lower Maumee BWQR Data	65
	BWQR Fish Indices	66
	Fish Tissue Sampling	67
	US Army Corps of Engineers Sediment Data	69
	Toxic Pollutants	70
	RAP Area Water Quality: Overview & Conclusions	77

WATER	POLLUTION SOURCES			70
1011211	INDUSTRIAL WASTEWATER DISCHARGES	• •	•	. /9
	MUNICIPAL WASTEWATER DISCHARGES	• •	٠	. /9
	Phosphorus Loodinge	• •	٠	. 04
	Phosphorus Loadings . Status of Facilities With Findings and Orders	• •	٠	. 04
	PACKAGE SEWAGE TREATMENT PLANTS	• •	•	. 80
	Dast Work	• •	•	. 88
	Past Work	• •	•	. 88
	Problem Summary	• •	٠	. 88
	Phosphorus. AGRICULTURAL RUNOFF WATER POLLUTION	• •	•	. 89
	Sediment	• •	•	. 90
	Sediment.	• •	٠	. 91
	Phosphorus.	• •	٠	. 93
	Nitrogen	• •	•	. 94
	Pesticides. OPEN WATER DISPOSAL OF DREDGED MATERIAL	• •	٠	. 95
	CDE Altornatives	• •	•	. 97
	CDF Alternatives.	• •	٠	. 100
	Environmental Conditions.	• •	٠	. 101
	CDF Impact on Fish Habitat.	• •	٠	. 102
	URBAN RUNOFF	• •	٠	. 103
	Present Urban Runoff Control Practices.	• •	٠	. 104
	Proposed NPDES Permit Requirements for Storm Sewers	• •	•	. 105
	Combined Sewer Overflows	• •	•	. 10/
	Toledo Combined Sewer Overflows	• •	•	. 109
	Maumee Combined Sewer Overflows	• •	•	. 111
	Whitehouse Overflew Deinte	• •	•	. 112
	Whitehouse Overflow Points	• •	٠	. 112
	HOME SEWAGE DISPOSAL ACTIVE AND CLOSED LANDFILLS/DUMPSITES	• •	٠	. 114
	Licensed Solid Waste Landfille	• •	•	. 119
	Licensed Solid Waste Landfills	• •	•	. 119
	Closed Dumpsites.	• •	٠	. 122
	Underground Storage Tanks	• •	•	. 12/
	Pits, Ponds and Lagoons	• •	٠	. 128
	Water Quality Impacts	• •	٠	. 130
	RCRA Facilities	• •	٠	. 13/
	ATMOSPHERIC DEPOSITION	• •	٠	. 138
		• •	٠	. 143
		• •	•	. 140
	Nitrogen Dioxide: Attainment	• •	٠	. 145
		• •	٠	. 145
	Carbon Monoxide: Attainment	• •		. 145
	Sulfur Dioxide: Attainment/Non-Attainment	• •	٠	. 145
	Particulates: Attainment/Non-Attainment	• •	٠	. 146
	Acid Rain	• •	•	. 146
REFERE	TESD Air Sampling			
GLOSS				
arossi	ARY	• •	•	. 155

~

LIST OF TABLES


TABLE NO.

TABLI	E NO.		<u>PA</u>	<u>GE</u>
1.				
2.	RAP Area Stream Segments and Use Designations	•	•	6
2.3.	Summary of Public Water Supply Systems	•	•	12
4 .	Spring Creel Surveys, 1975-1987	•	٠	14
	Angler Hours and Harvest, Grid 801: Maumee Bay	•	•	16
5.	Angler Hours and Harvest, Grid 802: Lake Erie	•	•	16
<u>6</u> .	Angler Hours and Harvest, Grids 801 & 802	٠	•	17
7.	Lommercial Harvest, Grid 801: Maumee Bay			18
8.	LOMMercial Harvest, Grid 802: Lake Frie			10
9.	Commercial Harvest, Grids 801 & 802 Domestic and Canadian Cargo - Toledo Harbor 1976-86	•	•	19
10.	Domestic and Canadian Cargo - Toledo Harbor 1976-86			22
11.	Uverseas Largo, 101edo Harbor 19/6-86			23
12.	Coastal and Estuarine Marshes	-		29
13.	Warmwater Habitat Streams & Water Quality Standards	•		32
14.	1986 305b Assessments of Water Quality	•	•	12
15.	1986 305b Summaries	•	•	11
16.	Lower Maumee BWQR Data Summary	•	•	77 /6
17.	BWQR Sediment Data: Priority Pollutant Data Summary	•	•	40 50
18.	CoF Toledo Harbor Sediments Data	•	•	33 E E
19.	CoE Toledo Harbor Sediments Data WQ Monitoring for 1983 Lucas Co Facilities Plan	•	٠	33
20.	WO Monitoring for 1965 Lucas Co Facilities Plan	•	•	58
21.	WQ Monitoring for 1985 Lucas Co Facilities Plan	٠	•	59
22.	Trends in TESD Water Quality Data	•	•	64
22.	Rating of Heavy Metals in Sediment by Stream Location	•	٠	66
	PCB Content of Fish Tissue, Lower Maumee River	•	•	68
24.	Guidelines for Sediment Quality	•	•	69
25.	Concentration Levels of Metals and Chemicals	•	•	70
26.	PAH Levels in Lake Erie	•	•	71
27.	Physical And Chemical Characteristics of Test Sediments	•	•	72
28.	Organic Priority Pollutants in Toledo Harbor Sediments	•		74
29.	Toledo Harbor Chemical Sediment Analyses.			75
30.	Lomparison of loledo Harbor & Western Basin Sediments			76
31.	Total Phosphorus Loadings From RAP Area Sources		_	78
32.	Notes on NPDFS Dischargers			on
33.	Publicly-Operated Treatment Works		Ī	25
34.	Active POTW Findings & Orders	•	•	26
35.	Historical Sediment & Nutrient Loads at Waterville	•	•	00
36.	Sediment and Phosphorus Affecting RAP Area	•	*	30 02
37.	Proposed Phosphorus Reductions for Priority Watersheds.	•	•	32. 04
38.	Pesticide Concentrations & Extrapolated Loads	٠	•	34 06
39.	Estimated Urban Runoff Phosphorus Loadings	•	•	90
40.	Toleda Combined Source Degulatore	•	•	104
41.	Toledo Combined Sewage Regulators	•	•	110
42.	Maymaa Combined Savara Devulatory	•	•	
	Maumee Combined Sewage Regulators	•	•	111
43.	Perrysburg Bypassed and Overflow Points	•	•	112
44.	Village of Whitehouse CSO Points	•	•	113
45.	Lucas County Concentration of On-Site Systems	•	•	117
46.	Wood and Ottawa County Concentrations of On-Site Systems	•	•	118
47.	List of Licensed Solid Waste Landfills			120
48.	List of Closed Dumpsites by Watershed			122
49.	List of Impoundments by Watershed		_	128
50.	List of RCRA Facilities	-	-	138
51.	Possible Hazardous Waste Superfund Sites	•	•	120
52.	Ambient Air Quality Standards	•	•	144
53.	Ambient Air Quality Standards	•	•	1/10
54.	TESD Air Sampling Network Sites	•	•	140
- • •				1 2

LIST OF FIGURES

FIGURE NO.

-	
1.	Study Area
2.	RAP Area Stream Segments
3.	ODNR Wildlife Grids. 801 & 802
4.	- FUTCUU JUTUUTUU LIMAANAT 24
5.	Coastal Marshes and Migration Flyways
6.	Maumee Bay Pollution as Indicated by Tubificids
7.	TESD Supp Cn July Ave Nutviewt D
	TESD Swan Cr. July Avg. Nutrient Parameters 1981-1986
8.	TESD Swan Cr. July Avg. Bacteriological Parameters, 1981-1986 36
9.	TESD Swan Cr. Avg. Nutrient Parameters 1981-1986
10.	TESD Swan Cr. Avg. Bacteriological Parameters, 1981-1986
11.	TESD Swan Cr. Nutrient Parameters at Eastgate Road by Year 37
12.	TESD Swan Cr. Bacterial Parameters at Eastgate Road by Year 37
13.	TESD Swan Cr. Nutrient Parameters at Hawley Street by Year 37
14.	TESD Swan Cr. Bacterial Parameters at Hawley Street by Year 37
15.	TESD Official Parameters at nawley Street by tear 37
16.	TESD Ottawa River July Avg. Nutrient Parameters 1981-1986
	TESD Ottawa River July Avg. Bacteriological Parameters, 1981-1986 38
17.	TESD Ottawa River Avg. Nutrient Parameters 1981-1986
18.	TESD Ottawa River Avg. Bacteriological Parameters, 1981-1986 38
19.	TESD Ottawa River Nutrient Parameters at Sylvania Ave by Year . 39
20.	TESD Ottawa River Bacterial Parameters at Sylvania Ave by Year . 39
21.	TESD Ottawa River Nutrient Parameters at Lagrange Street by Year 39
22.	TESD Ottawa River Bacterial Parameters at Lagrange Street by Year 39
23.	TESD Maumee Riv. July Avg. Nutrient Parameters 1981-1986 40
24.	TESD Maumee Riv. Avg. Nutrient Dependence 1001 1006
25.	TESD Maumee Riv. Avg. Nutrient Parameters 1981-1986
	TESD Maumee Riv. July Avg. Bacteriological Parameters, 1981-1986 40
26.	TESD Maumee Riv. Avg. Bacteriological Parameters, 1981-1986 40
27.	TESD Maumee River Nutrient Parameters at Waterville by Year 41
28.	TESD Maumee River Bacterial Parameters at Waterville by Year 41
29.	IESD Maumee River Nutrient Parameters at TT Bridge by Year 41
30.	IESD Maumee River Bacterial Parameters at TT Bridge by Year 41
31.	TESD Tributaries July Avg. Nutrient Parameters 1981-1986 42
32.	TESD Tributaries July Avg. Bacteriological Parameters, 1981-1986 42
33.	TESD Tributaries Avg. Nutrient Parameters 1981-1986
34.	TESD Tributaries Avg. Bacteriological Parameters, 1981-1986
35.	RUOD Swap Crook Inventobrate Community Index
36.	
	BWQR Swan Creek Macroinvertebrate Densities
37.	BWQR Swan Creek Sediment Metals
38.	BWQR Ottawa River Invertebrate Community Index
39.	BWQR Ottawa River Macroinvertebrate Densities
40.	BWQR Ottawa River Sediment Metals
41.	BWQR Maumee River Invertebrate Community Index
42.	BWQR Maumee River Macroinvertebrate Densities
43.	BWOR Maumee River Sediment Metals 52
44.	TESD and BWQR Water Quality Sampling Sites
45.	COE Maumee Sediment Data: Phenol, Hg, CN, Cd
46.	COE Maumaa Sodiment Data. An Ch. DE Ch. N.
	COE Maumee Sediment Data: As, Cr, Pb, Cu, Ni
47.	COE Maumee Sediment Data: Zn, NH ₃ , Mn, P, TKN
48.	COE Maumee Sediment Data: Fe and COD
49.	Urbanized Areas
50.	Combined Sewer Overflow Areas
51.	Critical Home Sewage Disposal Areas
52.	Dumps and Landfills
53.	Pits, Ponds and Lagoons
54.	Precipitation pH
55.	TESD Air Sampling Network

LOWER MAUMEE RIVER REMEDIAL ACTION PLAN-AREA OF CONCERN

<u>Ínan</u>

The Lower Maumee River Area of Concern has a wide variety of pollution problems. Although there have been dramatic water quality improvements over the past decade, serious problems still exist that affect not only water quality itself, but also the area's fish, wildlife, wetlands and public uses. These problems are being caused by excess sediments, nutrients and toxics entering the system. The result has been the need to issue fish consumption advisories, curtailment of body contact water use, and increased stress for endangered species.

An Area of Concern (AOC) is an area recognized by the International Joint Commission where water uses are impaired or where objectives of the Great Lakes Water Quality Agreement or local environmental standards are not being achieved. Heavy metals and organic chemical contamination has led to the Lower Maumee River being classified as an Area of Concern.¹

The Lower Maumee River AOC is one of 42 areas identified in the Great Lakes basin. In 1985, independent state members of the International Joint Commission's (IJC) Water Quality Board, identified four AOCs in Ohio: Ashtabula, Cuyahoga, Black and Maumee. Ohio EPA is the lead agency for the effort in Ohio. Such identification requires that Remedial Action Plans (RAP) be prepared for each of the AOCs, by the responsible jurisdictions. The RAP is an agreement between federal, state and local governments with the support of area citizens to restore the water quality and beneficial uses.

The requirement to develop RAPs also became a part of the Great Lakes Water Quality Agreement of 1987.² This agreement was signed in Toledo at the 1987 Biennial meeting of the IJC. It was determined at this time that RAPs should also include commitments to the IJC for implementation of the Great Lakes Water Quality Agreement of 1987.

The Maumee River contributes the largest tributary load of suspended sediments and phosphorus to Lake Erie. The major source is agricultural runoff upstream from the AOC. Phosphorus is considered the critical nutrient contributing to the cultural eutrophication of Lake Erie.

Sediment is the most prevalent nonpoint pollutant by volume and is a result of soil erosion. The problem stems from the predominance of agricultural land use, the extensive use of row crop agricultural systems, and the soil characteristics of the Maumee River basin. In spite of a low per acre erosion rate, the 1.2 million metric tons annually cause a significant water quality problem.

Nitrogen is an essential plant nutrient that is applied to cropland as a fertilizer. Nitrates are soluble and are carried to waterways with the runoff water, rather than with the sediment. Field tile effluent often carries nitrates to waterways. Nitrate concentrations have exceeded standards on the Maumee River, causing both Waterville and Bowling Green to have drinking water alerts during the spring and early summer.

The Maumee River is classified as either moderately or heavily polluted for heavy metals from a point at Rossford to the Maumee Bay, with the highest concentrations of most metals in the sediment found at or slightly above the mouth near Toledo's Wastewater Treatment Plant to River Mile 2 (vicinity of Norfolk Southern Railroad Bridge). Metals of concern include: chromium, copper, lead, nickel, zinc, manganese and arsenic.

Aquatic life use attainment for the Maumee River becomes non-attainment at Rossford (RM 9.4) and persists all the way into Maumee Bay. Arsenic seems to be the most significant industrial problem at RM 7.4. The combined sewer overflows begin at River Mile 4.7 (area of Portside) and become a real problem after the confluence with Swan Creek.

Below the Martin Luther King Bridge the Dissolved Oxygen is very low (fish cannot live without adequate DO values) and continues to the mouth. Ammonia and nitrites are elevated starting at the Norfolk Southern Railroad Bridge. Zinc is elevated above the mouth.

Documented investigation of fish species for the Maumee River show a 50% decline since 1981. Fish community composite and quality values drop 2 points from the Grand Rapids dam to the mouth. It is thought that the upstream movement of the Toledo WWTP plume and the numerous combined sewer overflow discharges are the cause of the low community values. From the Toledo WWTP into the Maumee Bay area of the Toledo Edison intake channel are displayed the lowest fish community values.

Then, too, are the categories of toxic pollutants of concern including poly-nuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and phthalates. These toxic chemicals, as well as the heavy metals, are known to biomagnify, bioaccumulate, or are suspected of causing cancer and are acutely toxic to aquatic organisms.

PAHs and phthalates have been found at detectable levels in the Maumee shipping channel. Studies of Toledo Harbor sediments that have been available for review have not shown sediment bound pesticides at levels high enough to arouse concern. Dioxins and furans, however, have not been studied. The PAH concentrations are at the lower end of the range of values for sites with cancer epizootics, pose a possible problem and must be of concern.

Bottom dwelling organisms avoid or cannot exist in areas which are highly contaminated with toxic compounds. They may however survive in areas where low levels of toxicants are found. This means that they are constantly exposed to these contaminants throughout their life spans. After accumulating toxicants, these organisms, if eaten, are the starting point for toxicants to move up the food chain to fish, then onto fish-eating birds and/or humans where they can accumulate.

Impacting water quality on the Ottawa River are the wall-to-wall dumps once sited in the floodplains which leak solvents, conventional pollutants and organic priority pollutants. The Dura Dump leachate, for example, contains high BOD, COD and organics, among which include PCBs. The City of Toledo has posted the area advising persons to avoid contact with the water, sediments and fish.

The degradation of Otter Creek is directly related to arsenic leaking from settling ponds created over thirty years ago. This creek has been a known "industrial sewer" for over twenty years, with oil soaked banks, and nickel and cyanide being detected in its waters. Swan Creek has poor water quality from its mouth to four miles upstream. Heavy metals, with the heaviest impact between Hawley Street and Collingwood Blvd., have helped to cause a 50% decline of fish species since 1981.

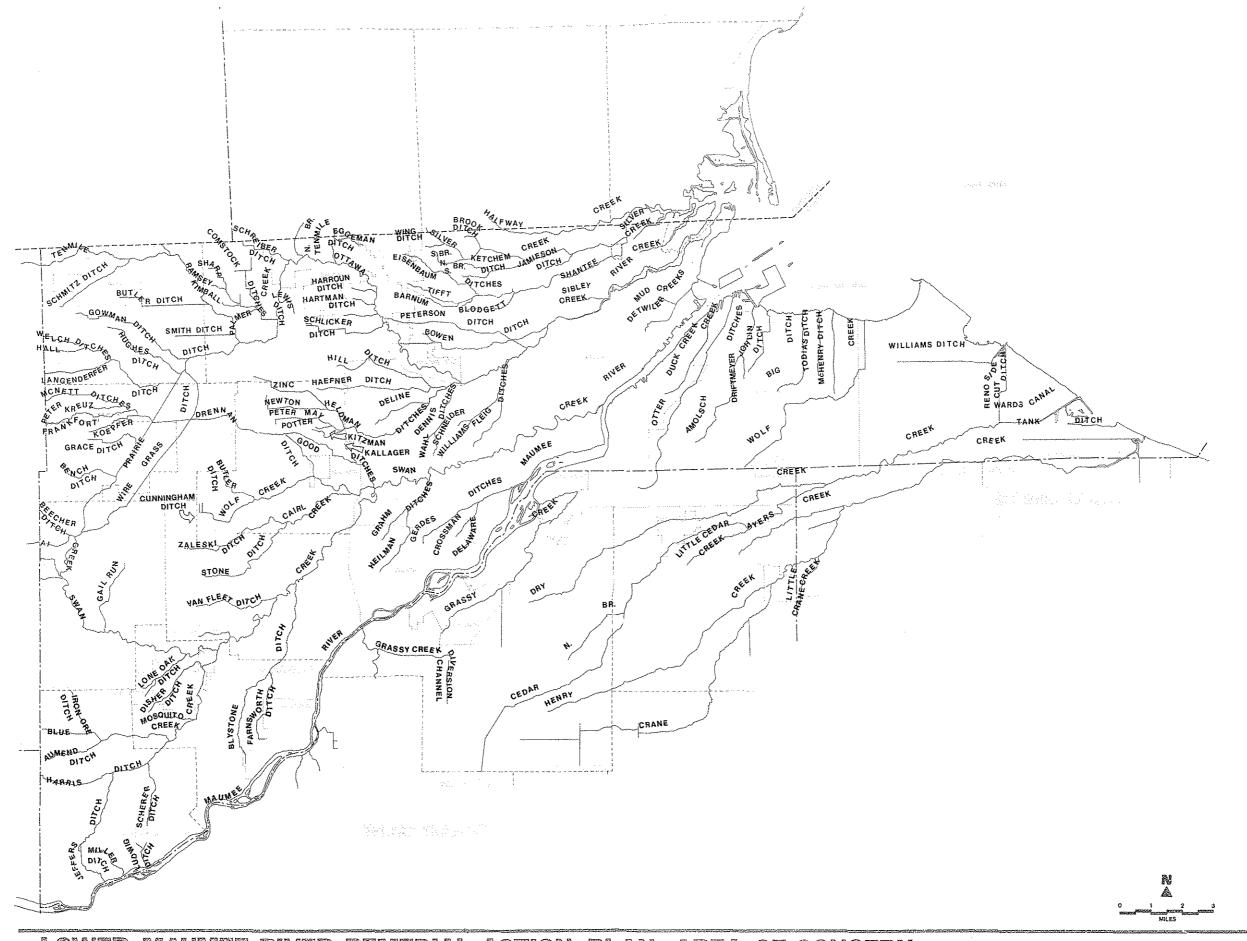
3

MAUMEE BASIN: DESCRIPTION AND USES

STREAM SEGMENTS OF THE MAUMEE RAP AREA

The Maumee and its tributaries are divided into a number of segments, according to their drainage areas. Each stream segment is classified as being a part of a major drainage basin. In the Maumee RAP Area, the basin is generally the Maumee River. A few streams in the RAP Area actually flow directly into the Maumee Bay/Lake Erie and are not tributary to the Maumee River. Within each basin, stream segments may be classified as part of a sub-basin. Each segment drains one or more watersheds.

There are three systems in use for classifying watersheds. These are:


Ohio EPA uses the *Planning and Engineering Data Management System for Ohio* (PEMSO) system. Each stream segment has a unique PEMSO number.

TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds.

The third system is *Land Resources Information System* (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS).³ LRIS watersheds are usually, but not always, the same as TMACOG's.

Stream segments are also categorized by their uses. They are assigned aquatic life use designations by the Ohio EPA, and each stream's water quality standards are based on its' use designations. All of the Maumee RAP Area streams are classified Warmwater Habitat (WWH), Agricultural and Industrial Water Supply, and Primary Contact Recreation (PCR). Any portions of the AOC that are within 500 yards of an existing public water supply intake are designated Public Water Supply.

A listing of RAP Area stream segments and their classifications is given in Table 1. The stream reaches are shown in Figure 2.

LOWER MAUNEE RIVER REMEDIAL ACTION PLAN - AREA OF CONCERN

manu

TABLE 1 RAP AREA STREAM SEGMENTS AND USE DESIGNATIONS

STREAM, BASIN, AND SUB-BASIN	WATERSHED NUMBERS	STREAM SEGMENT USES	LENGTH (Miles)
Ai Creek	TMACOG: 007	HABITAT: WHH	9.10
BASIN: Maumee	LRIS: 007	WATER SUPPLY: AI	
SUB-BASIN: Swan	PENSO: 410102	RECREATIONAL: PCR	
NOTES: Swan Creek, West Fork	STATE RESOLRCE? No	RAP? Yes	
Ayres Creek	TMACOG: 033	HABITAT: WH	0.60
BASIN: Lake Erie	LRIS: 033	WATER SUPPLY: AI	
SJB-BASIN: Crane Creek	PEMSO: 1610302	RECREATIONAL: POR	
NOTES:	STATE RESOLACE? No	RAP? Yes	
Biue Creek	TMACOG: 038,040	HABITAT: WH	11.90
BASIN: Maumee	LRIS: 038,040	WATER SLPPLY: AI	
SUB-BASIN: Swan	PENSO: 410103	RECREATIONAL: POR	
NOTES:	STATE RESOLRCE? No	RAP? Yes	
Cairl Creek	TMACOG: 042	HABITAT: WH	7.40
BASIN: Maumee	LRIS: 042	WATER SUPPLY: AI	
SUB-BASIN: Swan/Wolf	PEMSO: 410132	RECREATIONAL: PCR	
NOTES:	STATE RESOLRCE? No	RAP? Yes	
Cedar Creek BASIN: Lake Erie SUB-BASIN: Cedar NOTES:	IMALLE: US2 LRIS: 032 PEMSO: 1610303 STATE DEST DOE: No	WATER SUPPLY: AI RECREATIONAL: PCR	8.50
Crane Creek BASIN: Lake Erie SUB-BASIN: Crane NOTES:	TMACOG: 033 LRIS: 033 PEMSO: 1610302 STATE RESCIENCE: No.	HADITAT, LISE	12.70
Delaware Creek BASIN: Maumee SUB-BASIN: Maumee River NOTES:	TMACOG: 013 LRIS: 013 PENSO: 410133	HABITAT: WH WATER SUPPLY: AI	2.50
Dry Creek	TMACOG: 032	HABITAT: WH	11.50
BASIN: Lake Erie	LRIS: 032	WATER SUPPLY: AI	
SUB-BASIN: Cedar Creek	PEMSO: 1610303	RECREATIONAL: PCR	
NOTES:	STATE RESOLACE? No	RAP? Yes	
Duck Creek	TMACOG: 015	HABITAT: WHH	3.00
BASIN: Maumee	LRIS: 015	WATER SUPPLY: AI	
SUB-BASIN: Maumee River	PENSO: 410133	RECREATIONAL: PCR	
NOTES:	STATE RESOLRCE? No	RAP? Yes	
Gail Run	TMACOG: 008	HABITAT: WHH	4.70
BASIN: Maumee	LRIS: 008	WATER SUPPLY: AI	
SUB-BASIN: Swan	PEMSO: 410101	RECREATIONAL: PCR	
NOTES:	STATE RESCURCE? No	RAP? Yes	
Grassy Creek	TMACOG: 046,045	HABITAT: WH	2.50
BASIN: Maumee	LRIS: 046,045	WATER SUPPLY: AI	
SUB-BASIN: Maumee River	PEMSO: 410133	RECREATIONAL: PCR	
NOTES:	STATE RESCIRCE? No	RAP? Yes	
Halfway Creek BASIN: Maumee SUB-BASIN: North Maumee Bay NOTES:	TMACOG: 025,022,021 LRIS: 025,022,021 PENSO: 410302	HABITAT: WH WATER SUPPLY: AI RECREATIONAL: DCR	3.50
Harris Ditch	TMACOG: 075 LRIS: 075 PEMSO: 410103 STATE RESOURCE? No	HABITAT: WH	5.60

a.

•

~

STREAM, BASIN, AND SUB-BASIN	WATERSHED NUMBERS	STREAM SEGMENT USES	LENGTH (Miles)
Henry Creek BASIN: Lake Erie SUB-BASIN: Crane Creek NOTES:	TMACOG: 033 LRIS: 033 PENSO: 1610302 STATE RESOLRCE? No	STREAM SEGMENT USES HABITAT: WHH WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	9.00
Hill Ditch BASIN- Marmoo	TMACOG: 202	HABITAT:	0.00
SUB-RASIN: Ottawa NOTES: Lake Erie Watershed #1 BASIN: Maumee SUB-BASIN: Ottawa NOTES: Lake Erie Watershed #2	TMACOG: 030 LRIS: 030 PEMSO: 411133 STATE RESOURCE? No	HABITAT: WATER SUPPLY: RECREATIONAL: RAP? Yes	0.00
BASIN: MALINEE SUB-BASIN: Ottawa NOTES:	LRIS: UST PEMSO: 411364 STATE RESOURCE? No	RECREATIONAL: RAP? Yes	0.00
Lake Erie Watershed #3 BASIN: Maumee SUB-BASIN: Ottawa NOTES:	TMACOG: 034 LRIS: 034 PEMSO: 411363 STATE RESOURCE? No	HABITAT: WATER SUPPLY: RECREATIONAL: RAP? Yes	0.00
Lake Erie Watershed #3 BASIN: Maumee SUB-BASIN: Ottawa NOTES: Little Cedar Creek BASIN: Lake Erie SUB-BASIN: Cedar Creek NOTES:	TMACOG: 032 LRIS: 032 PEMSO: 1610303 STATE RESOURCE? No	HABITAT: WHH WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	2.50
BASIN: Lake Erie SUB-BASIN: Crane Creek NOTES:	LRIS: 033 PEMSD: 1610302 STATE RESOURCE? No	WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	3.50
Maumee River, Mouth-Perrysburg BASIN: Maumee SUB-BASIN: Maumee River NOTES:	TMACOG: 013,014,015,047 LRIS: 013,014,015,047 PEMSO: 410133 STATE RESOURCE? Yes	HABITAT: WHH WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	6.90
Maumee River, Perrysburg-Waterville BASIN: Maumee SUB-BASIN: Maumee River NOTES: Maumee River, Waterville-BG Water Intake BASIN: Maumee SUB-BASIN: Maumee River NOTES:	TMACOG: 079, 044 LRIS: 079, 044 PEMSO: 410133 STATE RESOURCE: Yes	HABITAT: WH WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	
Maumee River, Waterville-BG Water Intake BASIN: Maumee SLB-BASIN: Maumee River NOTES:	TMACOG: 078, 043 LRIS: 043 PEMSO: 410235 STATE RESOURCE? Yes	HABITAT: WHH WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	3.50
BASIN: Mauree SUB-BASIN: Swan/Blue NOTES:	LRIS: 040 PENSO: 410103 STATE RESOURCE? No	WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	0.80
Ottawa River at Toledo (Berdan to UT) BASIN: Maumee SLB-BASIN: Ottawa NOTES:	TMACOG: 005 LRIS: 005 PEMSO: 411331 STATE RESOURCE? Yes	HABITAT: WHH WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	3.50
Ottawa River at Toledo (Berdan to UT) BASIN: Maumee SUB-BASIN: Ottawa NOTES: Ottawa River at Toledo (Mouth to Berdan) BASIN: Maumee SUB-BASIN: Ottawa NOTES:	TMACOG: 005 LRIS: 005 PEMSD: 411331 STATE RESOLRCE? No	HABITAT: WHH WATER SUPPLY: AI RECREATIONAL: POR RAP? Yes	7.40

TABLE 1, CONTINUED RAP AREA STREAM SEGMENTS AND USE DESIGNATIONS

STREAM, BASIN, AND SUB-BASIN	WATERSHED NUMBERS	STREAM SEGMENT USES	LENGTH (Miles)
Ottawa River at Toledo (UT to North Branch) BASIN: Maumee SUB-BASIN: Ottawa NOTES: Otter Creek BASIN: Maumee SUB-BASIN: Maumee Bay NOTES:	TMACOG: 005,004 LRIS: 005,004 PEMSO: 411331 STATE RESOLRCE? No	HABITAT: WHH WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	0.00
Otter Creek	TMACOG: 028	HABITAT: HUH	6.00
BASIN: Maumee	LRIS: 028	WATER SUPPLY: AI	
SLB-BASIN: Maumee Bay	PENSO: 1610364	RECREATIONAL: PCR	
NOTES:	STATE RESOURCE? No	RAP? Yes	
BASIN: Maunee SUB-BASIN: Ottawa River NOTES:	IMALOGI: 002 LRIS: 002 PEMSO: 410301 STATE RESOLACE? No	WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	5.90
Reitz Road Ditch	TMACOG: 078	HABITAT:	0.00
BASIN: Maumee	LRIS: 078	WATER SLPPLY:	
SLB-BASIN:	PEMSO: 411235	RECREATIONAL:	
NOTES:	STATE RESOURCE? No	RAP? Yes	
Shantee Creek	TMACOG: 020	HABITAT: WHH	4.60
BASIN: Maumee	LRIS: 020	WATER SUPPLY: AI	
SUB-BASIN: North Maumee Bay	PEMSO: 410302	RECREATIONAL: PCR	
NOTES:	STATE RESOLICE? No	RAP? Yes	
Sibley Creek	TMACOG: 005	HABITAT: WHH	5.20
BASIN: Maumee	LRIS: 005	WATER SUPPLY: AI	
SUB-BASIN: Ottawa	PEMSO: 411331	RECREATIONAL: PCR	
NOTES:	STATE RESOURCE? No	RAP? Yes	
SIVE CLERK BASIN: Maumee SUB-BASIN: North Maumee Bay NOTES:	LRIS: 023 PEMSO: 410302 STATE RESOLACE? No	WATER SUPPLY: AI RECREATIONAL: POR RAP? Yes	7.30
Swan Creek (Mouth to Blue Creek) BASIN: Maumee	TMACCG: 012,010,041 LRIS: 012,010,041	WATER SUPPLY: AI	22.20
Swan Creek above Aî Creek	TMACOG: 008	HABITAT: WHH	7.93
BASIN: Maumee	LRIS: 008	WATER SUPPLY: AI	
SUB-BASIN: Swan Creek	PEMSO: 410101	RECREATIONAL: POR	
NOTES:	STATE RESOURCE? No	RAP? Yes	
Swan Creek above Blue Creek	TMACOG: 039	HABITAT: WHH	8.40
BASIN: Maumee	LRIS: 039	WATER SUPPLY: AI	
SUB-BASIN: Swan Creek	PEMSO: 410131	RECREATIONAL: PCR	
NOTES:	STATE RESOLRCE? No	RAP? Yes	
Termile Creek above North Branch	TMACOG: 001,003	HABITAT: WHH	34.80
BASIN: Maumee	LRIS: 001,003	WATER SUPPLY: AI	
SUB-BASIN: Ottawa River	PEMSO: 410301	RECREATIONAL: PCR	
NOTES:	STATE RESOURCE? No	RAP? Yes	
Termile Creek, North Branch	TMACCG: 006	HABITAT: WHH	6.50
BASIN: Maumee	LRIS: 006	WATER SUPPLY: AI	
SUB-BASIN: Ottawa Rîver	PEMSO: 410301	RECREATIONAL: PCR	
NOTES:	STATE RESCURCE? No	RAP? Yes	
Wolf Creek	TMACOG: 011	HABITAT: WH	7.00
BASIN: Maumee	LRIS: 011	WATER SUPPLY: AI	
SUB-BASIN: Swan	PEMSO: 410132	RECREATIONAL: PCR	
NOTES:	STATE RESOURCE? No	RAP? Yes	
Wolf Creek BASIN: Maumee SUB-BASIN: Maumee Bay NOTES:	PEMSO: 1610364 STATE RESCURCE? No	HABITAT: WHH WATER SUPPLY: AI RECREATIONAL: PCR RAP? Yes	2.80

EXISTING WATER USES

PUBLIC WATER SUPPLY

One of the surface water uses in the Lower Maumee River AOC is water supply. The primary use is for public water supply. Several industries use surface waters for industrial water supply as well.

As far as public water supply is concerned, two surface water bodies in the AOC are the sources of four public water supply systems. The Maumee River is the public water source for both the City of Bowling Green and the Village of Waterville. Lake Erie is the source for both the City of Oregon and the City of Toledo. According to 1980 population estimates, these four systems service a combined population of just over 524,000.

Three of the four public water supply systems are located in Lucas County. Most of the county is serviced by these systems except for Jerusalem, Richfield, Harding and Providence Townships and portions of Spencer and Swanton Townships. The three lower townships of Monroe County, Michigan and the northern portion of Wood County, Ohio are also serviced by these water supply systems. The Village of Whitehouse uses ground water as its public water supply source.

Oregon

The City of Oregon obtains its water supply directly from Lake Erie. The water is pumped from the low service pumping station in Jerusalem Township to the Water Treatment Plant (WTP) where approximately 8.0 million gallons per day (mgd) are purified and softened.

After treatment, a portion of the water is stored at the water treatment plant in a 1.5 million gallon (MG) reservoir and a 1.0 MG elevated tank at Coy Road. The rest is distributed to approximately 7,000 customers and serves a total population of 25,000 in Oregon and parts of Lucas, Wood and Ottawa Counties. Specifically, Oregon supplies water to the City of Oregon, the Village of Harbor View, the Village of Genoa and a portion of the City of Northwood.

Overall, the Oregon WTP has been able to maintain good water quality. Basically, the raw lake water is softened, disinfected and clarified before it is suitable for public use.

The three major water quality problems which cause the treatment plant the most trouble are sediments, turbidity and phosphates. Sediments and turbidity are problematic in the treatment process because they must be removed from the water. Therefore, the greater the amount of suspended sediment and turbidity, the greater the effort and cost required to remove them.

Phosphates create problems for the WTP because they stimulate algae growth. Algae blooms can cause taste and odor problems in potable water. When water containing increased numbers of algal cells or their metabolic and decay products (or other organic matter) is chlorinated for disinfection purposes, increased levels of trihalomethane result.^{4,5,0} Toledo

The City of Toledo obtains its water directly from Lake Erie. The water is pumped from the low service pumping station in Jerusalem Township to the Collins Park Water Treatment Plant in East Toledo. The Collins Park WTP purifies and softens approximately 120 mgd of lake water.

The Toledo water system constitutes the largest physical plant in the region for supplying treated water. Toledo supplies water to the entire county except Jerusalem, Richfield,

Harding and Providence Townships, parts of Spencer and Swanton Townships and those areas serviced by the Oregon WTP. It also supplies water to portions of northern Wood County and the lower Townships of Monroe County, Michigan. Specifically, the Cities of Toledo, Sylvania, Maumee, Perrysburg, Rossford, Luna Pier and a portion of the City of Northwood receive their water from Toledo. In addition, the Villages of Holland, Ottawa Hills and Walbridge are served by Toledo. Toledo supplies water to just under 120,000 customers and services a total population of approximately 464,000.

Overall, Collins Park WTP has been able to maintain good water quality. The lake water is softened, clarified and disinfected before it is distributed as public supply. The water quality problems that give the treatment plant the most trouble are the same as those already mentioned with regard to the Oregon WTP, sediments, turbidity and phosphates. Occasional taste and odor problems stemming from excessive algae growth have been the primary problems for the treatment plant.^{4,5,6}

Waterville

The Village of Waterville obtains its water supply directly from the Maumee River. The river water is pumped to the water treatment facilities where it is softened and purified. The WTP treats about 0.8 mgd.

The treated water is distributed to approximately 1,500 customers and serves a population of approximately 5,300 in the Village of Waterville and Lucas County. Specifically, portions of Monclova and Waterville Townships are serviced by this system in addition to the Village of Waterville. The current facilities will probably not be able to meet future needs without expansion. Therefore, the system may eventually be replaced by the Toledo system.

The river water is softened, disinfected and clarified before distribution. Generally, the water quality maintained by the treatment facility has been good. However, there have been cases, usually in the spring, when Nitrate and Trihalomethane levels have exceeded drinking water standards. The water quality problems which cause the most trouble for the WTP are sediment, turbidity, phosphates, nitrates and herbicides. These problems are discussed in the following section on the City of Bowling Green WTP.^{4,5,0}

Bowling Green

The Bowling Green Water System is the only public water supply system in the AOC which is located in Wood County. Approximately 90% of the public water used in Wood County is provided by surface water. Of that 90%, 80% is supplied by the Maumee River.

Bowling Green obtains its supply directly from the Maumee River. The City of Bowling Green WTP has the capacity to soften and purify 6.0 mgd.

After treatment, the water is distributed to just over 5,000 customers and serves a population of approximately 30,000 in Wood County. Specifically, the City of Bowling Green and the surrounding area of Wood County, the Villages of Haskins, Tontogany, Portage and the Miltonville area along River Road are supplied by the Bowling Green water system.

The river water is softened, disinfected and clarified before it is distributed. The Bowling Green Water System has recognized water quality problems which are related to the water quality of the Maumee River. Primarily, sediment, turbidity, phosphates, nitrates and herbicides are the most problematic.

High levels of turbidity require great efforts for removal. Turbidity units can reach very high levels in the Maumee River, especially in the spring, fall and during storm events.

Nitrates and herbicides present a difficult problem for treatment because they cannot be removed from the water with current installed treatment technologies. The best that can be done by the WTP is to dilute the water to reduce the concentrations of these substances. Therefore, there are times when the Bowling Green water supply contains high levels of nitrates and herbicides. This occurs at those times when the Maumee River has high levels of these substances which normally happens in the spring. The City is considering building a reservoir which would help dilute high nitrate water and provide greater reserve capacity in the event of a chemical spill on the river or abnormally low flow preventing the plant from pumping from the river.

Bowling Green occasionally has trouble with trihalomethanes. This usually occurs when there are increased amounts of algae present in the Maumee River. Algae cause increased amounts of organic matter in water. Chlorination of this organic matter during the disinfection process increases the formation of trihalomethane.^{4,5,6}

Summary

Generally speaking, the problems experienced by each of the public water supply systems can be attributed to sediment, nutrient and phosphorus loadings to the Maumee River. Non point sources are primarily responsible for these loadings. These non point sources include agricultural runoff and urban storm-water runoff.

A summary table which outlines the various characteristics of each public water systems has been provided (Table 2). The primary source of the information for the table was a TMACOG report, *Existing Water Supply Systems in the Toledo Metropolitan Area*⁵, which was prepared in June, 1983. Additional information was obtained from the Ohio Department of Natural Resource (ODNR), report, *Northwest Ohio Water Supply Plan, 1985 Edition.*⁴

TABLE 2

SUMMARY OF PUBLIC WATER SUPPLY SYSTEMS IN THE RAP AREA

Characteristics	Oregon	Toledo	Waterville	Bowling Green	TOTAL
Source of Supply	Lake Erie	Lake Erie	Maunee River	Maumee Rîver	****
Est. Pop. Served	25,000	463,940	5,255	30,000	524,195
Customers Served	6,800	118,585	1,500	5,287	132, 172
Area Served	Oregon, Harbor View, Genca, Northwood*, Wood County*, Lucas County*, Ottawa County*	Toledo, Sylvania, Holland, Perrysburg, Ottawa Hills, Maumee, Walbridge, Rossford, Northwood*, Monroe County*, Wood County*, Lucas County*	Waterville, Monclova Township*, Waterville Township*	Bowling Green, Haskins,Tontogany, Wood County*, Miltonville Area#	
Type of Treatment	Softening & Disinfection	Softening & Disinfection	Softening & Disinfection	Softening & Disinfection	
Water Quality Problems	Turbidity, Sediments & Phosphates	Turbidity, Sediments & Phosphates	Turbidity, Nitrates, Sediments & Herbicides	Turbidity, Nitrates, Sediments & Herbicides	
Treatment Process		**********	************************		
Coagulation/ Recarbonization	Alum,Lime,Soda Ash	(Hydraulic Mixing) Alum,Lime,Soda Ash	Alum,Lime	Ferric Chloride,Lime	
Flocculation	Slow Mechanical Mix	Slow Mechanical Mix	Slow Mechanical Mix	Slow Mechanical Mix	· -
Filtration	Rapid Sand Filters	Rapid Sand Filters	Rapid Sand Filters	Rapid Sand Filters	
Taste & Order Control	Activated Carbon, Chlorine Dioxide	Activated Carbon, Chlorine Dioxide	Activated Carbon, Chlorine Dioxide	Potassium Permanganate, Chlorine Dioxide, Activated Carbon	
Corrosion Control & Stabilization	Phosphate Compounds	Phosphate Compounds, Carbon Dioxide	ລ	Carbon Dioxide	
Fluoridation	Sodium Silicofluoride	Sodium Silicofluoride	Sodium Fluoride	Hydroflusilicic Acid	
Disinfection	Chlorine	Chlorine	Chlorine	Chlorine	

* Portions of

Area along River Road @ Unspecified

Source: TMACOG Report, "Water Supply Systems in the Toledo Metropolitan Area," June, 1983.

Maumee Basin *Remedial Action Plan* Investigation Report

SPORT AND COMMERCIAL FISHING

The surface waters in the Area of Concern are used for sport and commercial fishing. The primary areas for sport fishing are the Maumee River and Maumee Bay, however, sport fishing occurs throughout the Area of Concern. Commercial fishing has been limited to the Bay.

Data on sport fishing in the Maumee River are collected by the ODNR, Division of Wildlife. Spring Creel Surveys are taken periodically. A summary of these surveys from 1975 to 1987 has been provided (Table 3). The increase of walleye caught in 1987 probably reflects the good year of spawning experienced in 1982.

Walleye and white bass are the principle sport fish in the Maumee River. The spring Walleye run is an important sport fishing event which has drawn people from as far away as Alaska. Sport fishing occurs all along the Maumee River. Other fish which can be found in the Maumee include yellow perch, channel catfish, smallmouth bass, sauger and white perch.

The ODNR, Division of Wildlife does not take Creel Surveys for other streams in the AOC, therefore, it would be difficult to estimate the number of sport fish caught in this area. However, sport fishing is widespread throughout the AOC. The selection of a fishing site is only limited by the sport fisherman's experience and imagination. Limited fishing occurs in the Ottawa River and Swan Creek. Sport fishermen are commonly found at private ponds and small lakes such as Evergreen Lake in the Oak Openings Metropark.

Both sport and commercial fishing occur in the Maumee Bay. The Western Basin of Lake Erie has been considered one of the best fishing locations on Lake Erie. It has been well known for its walleye fisheries, being called the walleye capital of the world. Although the Walleye fisheries had declined in the early 1970's, they have made a comeback since 1975. The ODNR, Division of Wildlife, collects sport and commercial fishing data for Maumee Bay and Lake Erie. ODNR grids 801 and 802 are at least partially located in the Area of Concern (Figure 3). Summary data on sport boat angler hours and harvest from 1980 to 1987 has been provided (Tables 4-6). A summary of commercial harvest have also been provided (Tables 7-9). Yearly variations are largely due to the number of surveys taken in a given year.

An indication of the importance of fishing as a water use in the Area of Concern might be obtained by looking at the number of fishing related organizations. To date, 8 sportsmen organizations and 11 charter boat services have been identified and it is likely that more exist.

A public health advisory was issued in 1987 and 1988, against consumption of carp and channel catfish taken from Lake Erie, which affects Maumee Bay and the estuarine portion of the Maumee River. PCB levels have been detected in these species which frequently exceed the U.S. Food and Drug Administration's (USFDA) tolerance limit of two parts per million in the edible portions. While compliance with the advisory is voluntary for sport fishermen, USFDA has charged commercial fisheries with ensuring that fish which may enter interstate commerce fall within federal tolerance limits for contaminants.

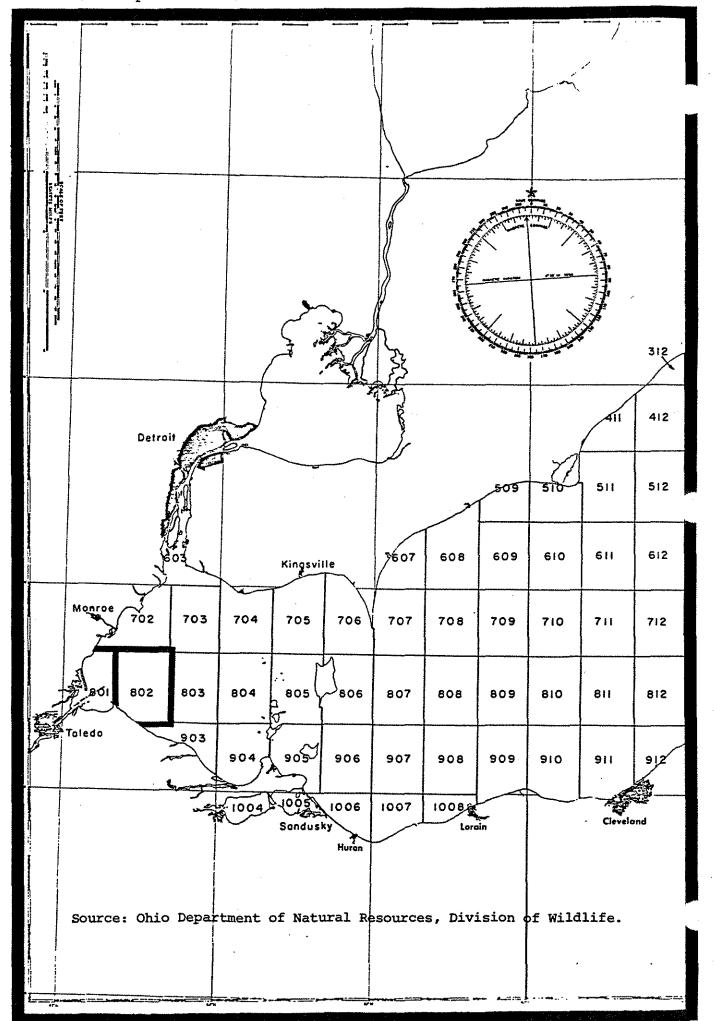
Fish kills are investigated by the ODNR Division of Wildlife. An annual report, *Water Pollution, Fish Kill, and Stream Litter Investigations,* is published, which summarizes the fish kills for the year. In the 1987 report, Table 2 ("Wild Animal Kills Resulting from Water Pollution Incidents Investigated in 1987) notes that 2,227 fish and invertebrates were killed in Swan Creek on July 30, 1987. The suspected pollutant was sewage.

		ANGLER HOURS		k	IALLEYE	W	WHITE BASS		
Year	Walleye*	White Bass@	TOTAL	Catch*	CPUE\$	Catch@	CPUE\$		
1975	112,500	43,800	214,100	15,475	.14	36,731	.84		
1976	36,700	81,600	186,800	5,336	.15	124,235	1.52		
1977	41,600	40,800	125,700	6,163	.15	79,995	2.00		
1978#	73,900			22,747	.29	, 			
1979#	184,800			33,614	.18	140 HA 400			
1980	155,800	46,700	230,800	38,442	.23	87,700	1.34		
1981	161,700	93,200	298,200	21,415	.11	165,500	1.48		
1982	201,400	133,100	368,900	37,300	.16	172,372	1.05		
1983+									
1984	143,200	59,900	210,100	28,899	.17	137,091	1.56		
1985+									
1986+									
1987	247,000	56,100	339,500	69,871	.25	66,633	.75		
TOTAL	1,358,600	555,200	1,974,100	279,262		870,257			

TABLE 3SUMMARY OF ANGLER HOURS, CATCH AND CATCH RATES IN THE SPRING CREEL SURVEYS:MAUMEE RIVER FROM 1975-1987

* Anglers Seeking Walleye.

@ Anglers Seeking White Bass.


Walleye Fishery Only Surveyed.

+ No River Surveys were Conducted.

\$ Catch Per Unit of Effort

Source: Unpublished data. Ohio Department of Natural Resources, Division of Wildlife.

Maumee Basin *Remedial Action Plan Investigation Report*

Year	Angler Hours	Yellow Perch	Walleye	White Bass	Freshwater Drum	Channel Catfish	Smallmouth Bass	Other Fish	TOTAL Harvest
1980	127,622	306,802	14,744	5,574	4,208	1,677	0	91	333,096
1981	4,313	2,702	0	4	65	71	0	124	2,966
1982	24,135	6,919	8,663	0	524	84	0	0	16,190
1983	8,524	0	3,400	0	0	0	0	0	3,400
1984	61,123	175,096	22,501	9,926	340	2,178	0	0	210,041
1985	Ú 0	´ 0	´ 0	<i>.</i> 0	0	<u>́</u> 0	0	0	0
1986	70,973	206,742	3,744	2,814	676	2,260	0	2,260	218,496
1987	31,788	65,157	1,132	16,489		2,302		´ 0	85,730
TOTAL	328,478	763,418	54,184	34,807	6,463	8,572	0	2,475	869,919

TABLE 4SPORT BOAT ANGLER HOURS AND HARVEST 1980-87GRID 801: MAUMEE BAY

TABLE 5SPORT BOAT ANGLER HOURS AND HARVEST 1980-87GRID 802: LAKE ERIE

Year	Angler Hours	Yellow Perch	Walleye	White Bass	Freshwater Drum	Channel Catfish	Smallmouth Bass	Other Fish	TOTAL HARVEST
1980	879,233	2,219,818	299,644	1,394	13,013	2,357	0	153	2,536,379
1981	0	0	0	0	0	0	0	0	0
1982	936,765	2,151,747	171,101	4,946	11,346	5,930	0	3,555	2,348,625
1983	214,710	248,315	28,426	43,778		1,942	0	. 0	323,737
1984	619,241	783,467	442,336	9,103		322	71	58	1,237,232
1985	283,056	503,427	126,506	1,472		3,658	0	2,364	639,819
1986	416,866	527,887	157,418	1,494	8,394	3,881	0	12,763	711,837
1987	331,105	341,588	148,754	8,268	•	2,113	0	Ý 0	505,612
TOTAL	3,680,976	6,776,249	1,374,185	70,455	43,185	20,203	71	18,893	8,303,241

Source: Unpublished data. Ohio Department of Natural Resources, Division of Wildlife.

,

Maumee Basin Remedial Action Plan Investigation Report

.

.

A.

16

TABLE 6											
SPORT	BOAT	ANGLER	HOURS	AND	HARVEST	1980-87					
GRIDS	801	& 802:	MAUME	E BA	Y AND LA	KE ERIE					

Year	Angler Hours	Yellow Perch	Walleye	White Bass	Freshwater Drum	Channel Catfish	Smallmouth Bass	Other Fish	TOTAL HARVEST
1980	1,006,855	2,526,620	314,388	6,968	•	4,034	0	244	2,869,475
1981	4,313	2,702	0	4	65	71	0	124	2,966
1982	960,900	2,158,666	179,764	4,946	11,870	6,014	0	3,555	2,364,815
1983	223,234	248,315	31,826	43,778	1,276	1,942	0	0	327,137
1984	680,364	958,563	464,837	19,029	2,215	2,500	71	58	1,447,273
1985	283,056	503,427	126,506	1,472	2,392	3,658	0	2,364	639,819
1986	487,839	734,629	161,162	4,308	9,070	6,141	0	15,023	930,333
1987	362,893	406,745	149,886	24,757	5,539	4,415	Ō	0	591,342
TOTAL	4,009,454	7,539,667	1,428,369	105,262	49,648	28,775	71	21,368	9,173,160

Source: Unpublished data. Ohio Department of Natural Resources, Division of Wildlife.

TABLE 7COMMERCIAL MARVEST IN POUNDS 1983-86.GRID 801: MAUMEE BAY

	1983	1984	1985	1986	TOTAL
Yellow Perch Carp White Bass Channel Catfish Drum Bullhead Buffalo Goldfish Suckers Quillback Gizzard Shad White Perch	339 107,900 19,592 7,972 13,647 4,703 195 810	11 106,650 7,998 8,427 50 2,724 234 30 60 	83,030 44,926 19,829 223 1,664 287 363 2,424	53,500 11,856 7,130 425 4,918 154 20 180 1,725 540	350 351,080 84,372 43,358 14,345 14,009 870 20 573 2,595 2,424 540
TOTAL	155,158	126,184	152,746	80,448	514,536

TABLE 8COMMERCIAL HARVEST IN POUNDS 1983-86.GRID 802: LAKE ERIE

	1983	1984	1985	1986	TOTAL
Yellow Perch Carp White Bass Channel Catfish Drum Bullhead Buffalo Goldfish Suckers Quillback Gizzard Shad White Perch	11,906 20,180 124,100 6,684 31,657 5,112 3,459 14,949 11,395 125 14,755	2,347 10,310 204,770 10,739 12,975 10,177 5,757 414 3,141 13,041 42,208	6,104 218,576 205,081 15,012 18,966 15,195 7,163 1,011 6,210 10,904 38,019	26,504 10,791 72,805 6,767 22,793 9,904 4,107 275 3,120 7,691 27,993	46,861 259,857 606,756 39,202 86,391 40,388 20,486 1,700 27,420 43,031 125 122,975
TOTAL	244,322	315,879	542,241	192,750	1,295,192

Source: Unpublished data. Ohio Department of Natural Resources, Division of Wildlife

,

Maumee Basin Remedial Action Plan Investigation Report

٤.

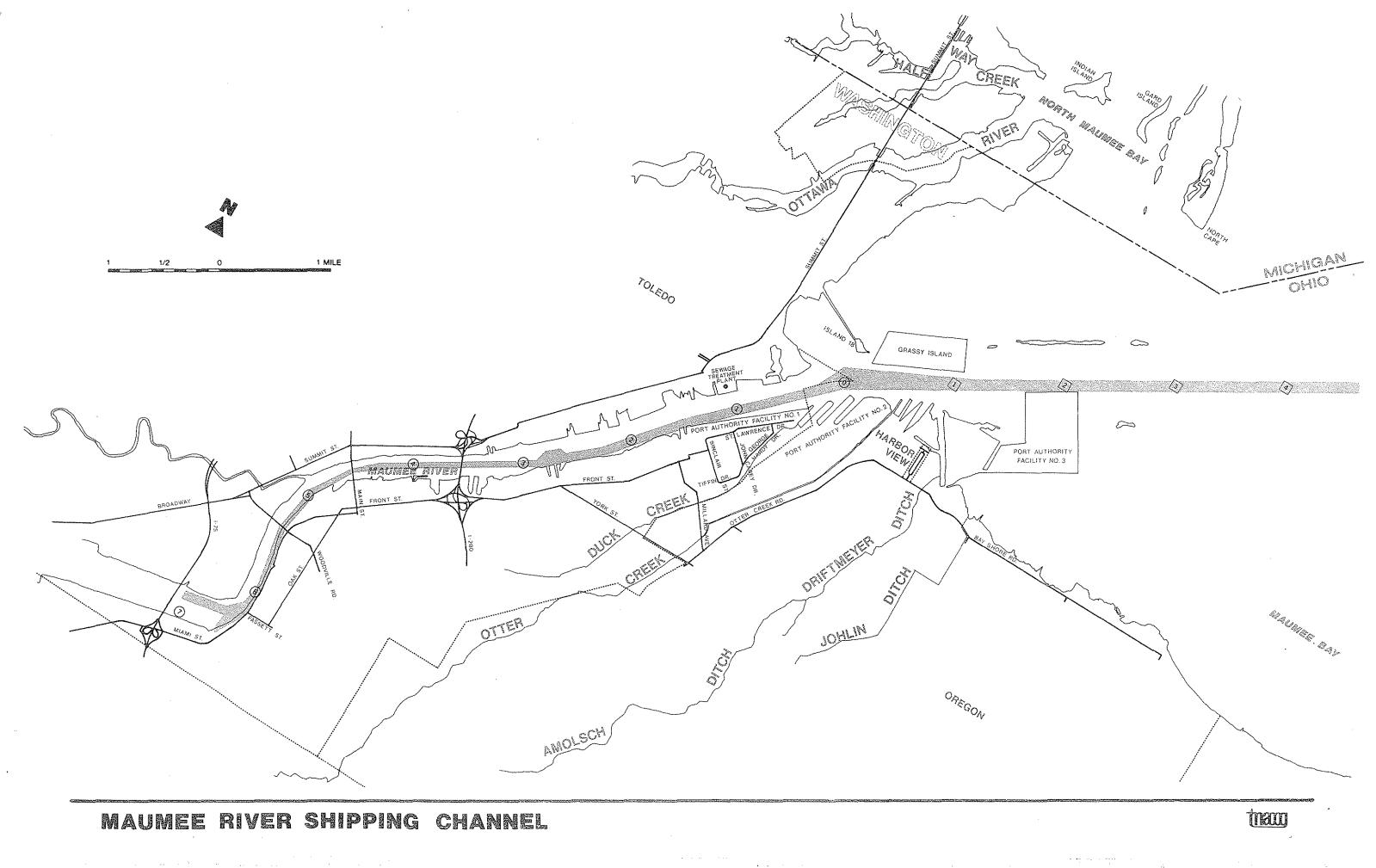
18

`

	COMMERCIAL HARVEST IN POUNDS 1983-86 GRIDS 801 & 802: MAUMEE BAY AND LAKE ERIE				
	1983	1984	1985	1986	TOTAL
Yellow Perch	12,245	2,358	6,104	26,504	47,211
Carp	128,080	116,960	301,606	64,291	610,937
White Bass	143,692	212,768	250,007	84,661	691,128
Channel Catfish	14,656	19,166	34,841	13,897	82,560
Drum	45,304	13,025	19,189	23,218	100,736
Bullhead	9,815	12,901	16,859	14,822	54,397
Buffalo	3,654	5,991	7,450	4,261	21,356
Goldfish	0	414	1,011	295	1,720
Suckers	14,949	3,171	6,573	3,300	27,993
Quillback	12,205	13,101	10,904	9,416	45,626
Gizzard Shad	125	Ú 0	2,424	0	2,549
White Perch	14,755	42,208	38,019	28,533	123,515
TOTAL	399,480	442,063	694,987	273,198	1,809,728

TABLE 9

Source: Unpublished data. Ohio Department of Natural Resources, Division of Wildlife


COMMERCIAL NAVIGATION

One of the most important uses of the Maumee River and Bay has been commercial navigation. The Toledo shipping channel which begins at river mile (RM) 7.0 near the I-75 bridge and extends out into the Maumee Bay to lake mile (LM) 18 is vitally important to the economic well being of the region and is the only commercial navigation route in the AOC (Figure 4). Toledo is the third largest port on the Great Lakes. Its location makes it a logical turn around point for St. Lawrence Seaway traffic and it serves one of the largest rail centers in the nation.⁶ Various goods are shipped to and received from domestic, Canadian and overseas locations. Summaries of domestic and Canadian and over-seas cargo shipped from the port from 1976 to 1986 have been provided (Tables 10 & 11).

The channel is 18 miles long, 500 feet wide and 28 feet deep in the Maumee Bay. The Maumee River channel is 7 miles long, 400 feet wide and 27 feet deep.' Those depths are maintained by the U.S. Army Corps of Engineers (COE) through frequent channel dredging. Due to the heavy sediment loading to the Maumee River and the shallowness of the Western Lake Erie Basin (25 foot average)' sedimentation is the primary obstacle for navigation on the Maumee River and Bay.

The COE dredges approximately one million cubic yards of materials from the channel each year. Prior to 1975, those materials were disposed of in confined disposal facilities (CDF) or by open lake disposal. From 1975 to 1985, dredge spoils were placed in the currently active CDF, Facility #3, to protect the environment from contaminated sediments. In 1985, U.S. EPA approved of open lake disposal of materials dredged from less polluted areas of the channel if chemical analysis showed that the materials to be disposed of were similar to sediment in certain areas of the Western Basin where disposal had occurred in the past.

Open lake disposal requires 401 certification from the Ohio EPA. The 1987 401 Certification stated that it is the intention of the Ohio EPA to condition future 401 certifications to eventually phase out open lake disposal. However, it is the responsibility of the City of Toledo and the Toledo-Lucas County Port Authority to develop reuse alternatives for dredged materials.

• • • •

TURTLE SISLAND

roi foo "HARBOR \sim (IGHT

LARE ERIE

I DINEDGED MATTER

TABLE 10 SEAPORT STATISTICS: 1976-1986, FOR SEASON THROUGH DECEMBER 31 TOLEDO HARBOR DOMESTIC & CANADIAN CARGO (Short Tons)

Commodity	1976 Season	1977 Season	1978 Season	1979 Season	1980 Season	1981 Season
Coal	14,542,037	13,393,777	14,194,776	14,570,580	12,588,982	12,159,605
Iron Ore	4,804,137	3,541,824	5,649,765	5,331,354	2,784,646	3,956,278
Newsprint	48,024	56,324	44,307	47,923	37,900	38,820
Pig Iron	57,328	18,818	46,851	12,541	19,901	34,015
Salt	264,052	325,312	266,089	261,988	159,438	70,465
Cement	88,645	104,874				
Grain	1,936,632	1,872,738	2,547,278	2,592,774	3,766,650	3,353,742
Petro.Prod.	862,398	804,733	793,179	879,412	609,794	390,143
Oth.Dry Bulk	116,609	122,100	211,677	260,231	548,089	854,121
Oth.Liq.Bulk	8,294					
Gen. Cargo						
TOTAL	22,728,156	20,240,500	23,753,922	23,956,803	20,515,400	20,857,189
Commodity	1982 Season	1983 Season	1984 Season	1985 Season	1986 Season	TOTAL
Commodity 			ه خنه خنه هنه هنه خنه خنه هنه هنه هنه هن			
	1982 Season 8,803,621 2,653,474	1983 Season 11,155,130 2,889,808	1984 Season 12,042,839 3,559,609	1985 Season 10,498,225 2,940,010	1986 Season 10,675,904 3,178,676	TOTAL 134,625,476 41,289,581
Coal	8,803,621	11,155,130	12,042,839	10,498,225	10,675,904	134,625,476
Coal Iron Ore	8,803,621	11,155,130	12,042,839 3,559,609	10,498,225 2,940,010	10,675,904 3,178,676	134,625,476 41,289,581
Coal Iron Ore Newsprint	8,803,621 2,653,474	11,155,130 2,889,808	12,042,839 3,559,609 31,434	10,498,225 2,940,010 21,050	10,675,904 3,178,676 12,880	134,625,476 41,289,581 338,662
Coal Iron Ore Newsprint Pig Iron	8,803,621 2,653,474 6,353	11,155,130 2,889,808 16,024	12,042,839 3,559,609 31,434 18,498	10,498,225 2,940,010 21,050 25,436	10,675,904 3,178,676 12,880 14,010	134,625,476 41,289,581 338,662 269,775
Coal Iron Ore Newsprint Pig Iron Salt	8,803,621 2,653,474 6,353	11,155,130 2,889,808 16,024	12,042,839 3,559,609 31,434 18,498	10,498,225 2,940,010 21,050 25,436	10,675,904 3,178,676 12,880 14,010	134,625,476 41,289,581 338,662 269,775 2,241,519
Coal Iron Ore Newsprint Pig Iron Salt Cement Grain Petro.Prod.	8,803,621 2,653,474 6,353 192,965	11,155,130 2,889,808 16,024 23,721	12,042,839 3,559,609 31,434 18,498 257,955	10,498,225 2,940,010 21,050 25,436 215,582	10,675,904 3,178,676 12,880 14,010 203,952 916,678 206,382	134,625,476 41,289,581 338,662 269,775 2,241,519 193,519 23,523,004 6,266,287
Coal Iron Ore Newsprint Pig Iron Salt Cement Grain Petro.Prod. Oth.Dry Bulk	8,803,621 2,653,474 6,353 192,965 2,410,340	11,155,130 2,889,808 16,024 23,721 1,052,130	12,042,839 3,559,609 31,434 18,498 257,955 1,471,378	10,498,225 2,940,010 21,050 25,436 215,582 1,602,664	10,675,904 3,178,676 12,880 14,010 203,952 916,678 206,382 899,262	134,625,476 41,289,581 338,662 269,775 2,241,519 193,519 23,523,004 6,266,287 6,297,888
Coal Iron Ore Newsprint Pig Iron Salt Cement Grain Petro.Prod. Oth.Dry Bulk Oth.Liq.Bulk	8,803,621 2,653,474 6,353 192,965 2,410,340 339,636	11,155,130 2,889,808 16,024 23,721 1,052,130 575,059	12,042,839 3,559,609 31,434 18,498 257,955 1,471,378 384,677 890,556	10,498,225 2,940,010 21,050 25,436 215,582 1,602,664 420,874	10,675,904 3,178,676 12,880 14,010 203,952 916,678 206,382	134,625,476 41,289,581 338,662 269,775 2,241,519 193,519 23,523,004 6,266,287 6,297,888 14,800
Coal Iron Ore Newsprint Pig Iron Salt Cement Grain Petro.Prod. Oth.Dry Bulk	8,803,621 2,653,474 6,353 192,965 2,410,340 339,636	11,155,130 2,889,808 16,024 23,721 1,052,130 575,059	12,042,839 3,559,609 31,434 18,498 257,955 1,471,378 384,677	10,498,225 2,940,010 21,050 25,436 215,582 1,602,664 420,874	10,675,904 3,178,676 12,880 14,010 203,952 916,678 206,382 899,262	134,625,476 41,289,581 338,662 269,775 2,241,519 193,519 23,523,004 6,266,287 6,297,888

ډ

Source: Toledo-Lucas County Port Authority.¹⁰

.

Maumee Basin Remedial Action Plan Investigation Report 22

TABLE 11SEAPORT STATISTICS:1976-1986, FOR SEASON THROUGH DECEMBER 31TOLEDO HARBOR OVERSEAS CARGO (Short Tons)

Commodity	1976 Season	1977 Season	1978 Season	1979 Season	1980 Season	1981 Season
Direct Grain	11,535,384	2,128,653	2,316,088	1,630,622	1,018,702	
Shipments Dry Bulk	24,145	74,469	480,745	111,911		
Fertilizer			10000 5000 ADM		66,966	
Oth. Dry Bulk					149,439	
Gen.& Misc. Cargo Coal	494,102 (Fac. <u>#1)</u>	763,895 (Fac.#1)	532,416 (Fac.#1)	441,732 (Fac.#1)	181,189 	·
Petrol. Prod.			1,013			
Liquid Bulk	24,806	30,195	29,025	27,385	30,204	and the second
Military Cargo	(Fac. <u>#1)</u>	(Fac. #1)	(Fac. <u>#1)</u>	(Fac. #1)		
TOTAL	12,078,437	2,997,212	3,359,287	2,211,650	1,446,500	
Commodity	1982 Season	1983 Season	1984 Season	1985 Season	1986 Season	TOTAL
Direct Grain Shipments	945,220	623,178	1,143,852	1,023,168	1,224,506	23,589,373
Dry Bulk				بنته فية حت		691,270
Fertilizer	85,435	52,808	61,062	71,678	82,519	420,468
Oth. Dry Bulk	59,153	9,769	6,208	12,761	67,495	304,825
Gen.& Misc.	135,120	248,713	285,900	226,044	300,246	3,609,357
Cargo Coal			23,659	21,959	69,663	115,281
Petrol. Prod.						1,013
Liquid Bulk	30,295	36,796	15,423	34,450	55,440	314,019
Military Cargo					4,673	4,673
TOTAL	1,255,223	971,264	1,536,104	1,390,060	1,804,542	29,050,279

Source: Toledo-Lucas County Port Authority.¹⁰

Maumee Basin Remedial Action Plan Invest⁻⁻stion Report

23

RECREATION

The use of surface waters for recreation is widespread throughout the AOC. According to state studies, Lake Erie is the number one location for water recreation in the area, as it is for the state.^{11,12,13} In addition, the Maumee River and the Ottawa River are utilized for their recreational potential as well.

Water-based recreation activities play an important role in outdoor recreation in the AOC as does the aesthetic quality of the waters. Water based recreation has been divided into two categories, contact and non-contact activity. Contact activity has been defined as any water recreation activity which results in frequent or continuous body contact with the water. Such activities would include swimming, water skiing and sail boarding. Non-contact activity has been defined as any water recreation activity which result in coming into frequent or continuous body contact with the water. Sailing and power boating are examples of non-contact activities.

The principle water-based recreational activities in the AOC have been sailing, canoeing, power boating, fishing, swimming, sail boarding, jet skiing, waterfowl hunting, birding, and water skiing. According to the Ohio Water Quality Standards, all of the surface waters in the AOC have a primary contact use designation. Therefore, any of these water-based recreational activities could be performed on any surface water body in the area, assuming that it was large enough to handle the activity. Due to size alone, many activities have been limited to Maumee Bay and Lake Erie, the Maumee River and the Ottawa River.

The importance of the scenic value of the area's waters should not be overlooked. Two state parks and five metroparks are directly linked to the surface waters in the AOC. The state parks are located in the eastern portion of Lucas County along the shore of Maumee Bay and Lake Erie. The metroparks are located along the Maumee River, the Ottawa River and Swan Creek.

The Toledo area, based on current and projected recreation pressure, has been identified in the Lake Erie access study, ODNR, as a priority area for launch ramp projects, ODNR or public agency acquisition of boat access sites and shore based fishing projects.¹² The public has demonstrated a strong desire to use the waters in the AOC for recreation.

Natural Areas

The Maumee River watershed in the AOC provides a great diversity of vital habitats for at least one thousand species of plants and thousands of species of animal life ranging from the white tail deer to rare insects. This variety results from landforms which range from dry sand dunes to damp prairies and swamp woodlands. It is also a corridor for migrating birds. Eagle and osprey sightings occur in the area. Over 80 plants are listed as endangered or threatened species in the State of Ohio within the AOC. The future of their existence depends directly upon improvements in water and air quality in the area.

This habitat takes the form of green space which is under the stewardship of the following organizations: The Nature Conservancy, Metropark District of the Toledo Area, various municipal parks, and several divisions of the ODNR.

Significant archaeological findings have shown that the natural area has provided abundantly for human needs for at least 6,000 years.

A number of research projects by the Ohio State University and the Ohio Department of Natural Resources have shown the Maumee River to be an important spawning and nursery area for every species of game and forage fishes. Large numbers of walleye from both Lake Erie and Lake St. Clair congregate in the riffles between Perrysburg and Waterville to spawn every April. This same river section is used during May by a large spawning stock of white bass. The estuarine portion of the river is used as a spawning area by gizzard shad and freshwater drum from Lake Erie and is also an important nursery area for young white bass, gizzard shad and fresh water drum. Several studies have suggested that the Maumee River may be the single most important production area on Lake Erie for gizzard shad, which are critical forage for many commercial and sport fish species.

The decline of wetland habitat in the AOC is significant historically beginning in the late 1800s and continuing up to the present. Early accounts reported vast marshes along the Lake Erie shoreline stretching for miles inland. South of the Maumee River was a wet forest called the Great Black Swamp. Large wet prairies existed south of the river and north in west central Lucas County.

These wetland habitats served as natural storage areas for rainfall, allowing water to filter through soil maintaining the water table at a higher level than present day. Broad marshes allowed water to evaporate back into the atmosphere or to slowly flow in streams and rivers to Lake Erie. The affects of precipitation were moderated because water spread out over a large area of wet prairies, swamp forest and marshes.

With settlement came clearing and draining of wetlands. The underlying soil was crisscrossed with drain tiles and ditches which carried the runoff to streams and rivers. With the introduction of agriculture into the area excess water needed to be quickly drained away to streams to prevent flooded crops in fields.

The natural area has been drastically altered by agriculture and development. Removal of trees and draining and filling of wetlands have reduced the time water is allowed to remain in an area.

The effect is that more water enters streams at a faster rate carrying with it sediment. Frequent downstream flooding and increased erosion can be expected with further development. The brownish color of water in the rivers and streams of the AOC is caused by fine soil particles in suspension, resulting from erosion from agricultural run-off and developmental storm drainage sewers.

The value of preserving plants and natural areas in general, is both for what we know about them and for what we may learn from them in future years. Natural areas and resources have historically provided for basic human needs and life itself.

Lake Erie and Maumee Bay

Water-based recreational activities on Maumee Bay and Lake Erie consist of sailing, power boating, fishing, swimming, sail boarding, jet skiing and water skiing. The primary water quality problems have been sediment and nutrient loading which increase turbidity and algae growth. Boating and fishing are probably the most important recreational activities occurring on the Lake and Bay.

Maumee Bay State Park is located along the south shore of Maumee Bay adjacent to the City of Oregon. Camping and hiking are the principle activities at the park at this time. Shoreline fishing is another recreation activity which occurs at the park. There are plans to create a beach at the park which would facilitate swimming and related activities, although some concern over the water quality in the Bay has been expressed. The problem of suspended sediments has been the primary concern.

Crane Creek State Park is located at the extreme eastern corner of Lucas County and marks the eastern most limit of the AOC. The primary recreational activities at Crane Creek State Park are swimming, boating and related activities. Activities at the park are centered around the beach. The adjacent bird trail at Magee Marsh annually attracts thousands of visitors from many states.

Maumee River

Water-based recreational activities on the Maumee River are the same as those on the Bay and include canoeing. Certain stream segments are more appropriate for one activity than another. As described under sport and commercial fishing, fishing on the River normally occurs upstream from the Maumee-Perrysburg Bridge. Sailing and power boating occur from Perrysburg to the mouth of the Maumee River, as do the other water-based activities. Canoeing is popular both upstream and downstream from the Maumee-Perrysburg Bridge, with the up stream area being the most important. The lower portion of the River (RM 7) including areas just below RM 5, at the Swan Creek confluence near Portside, is considered polluted. This also happens to be one of the areas most impacted by combined sewer overflows (CSO). Despite the pollution, people swim, ski and sail board in this area.

The Maumee River, upstream from the Maumee-Perrysburg Bridge, is a State Resource Water because ODNR designated it as a scenic river. The Side Cut Metropark is located in this stream segment along the banks of the Maumee River south of the City of Maumee. The principle activities at the park include canoeing, wildlife observation, hiking and fishing. Blue Grass Island can be reached from the park which is an area often used for nature exploration and is world famous for Walleye fishing. The park is also an important source of historical information on the Maumee River and its impact on the development of the region.

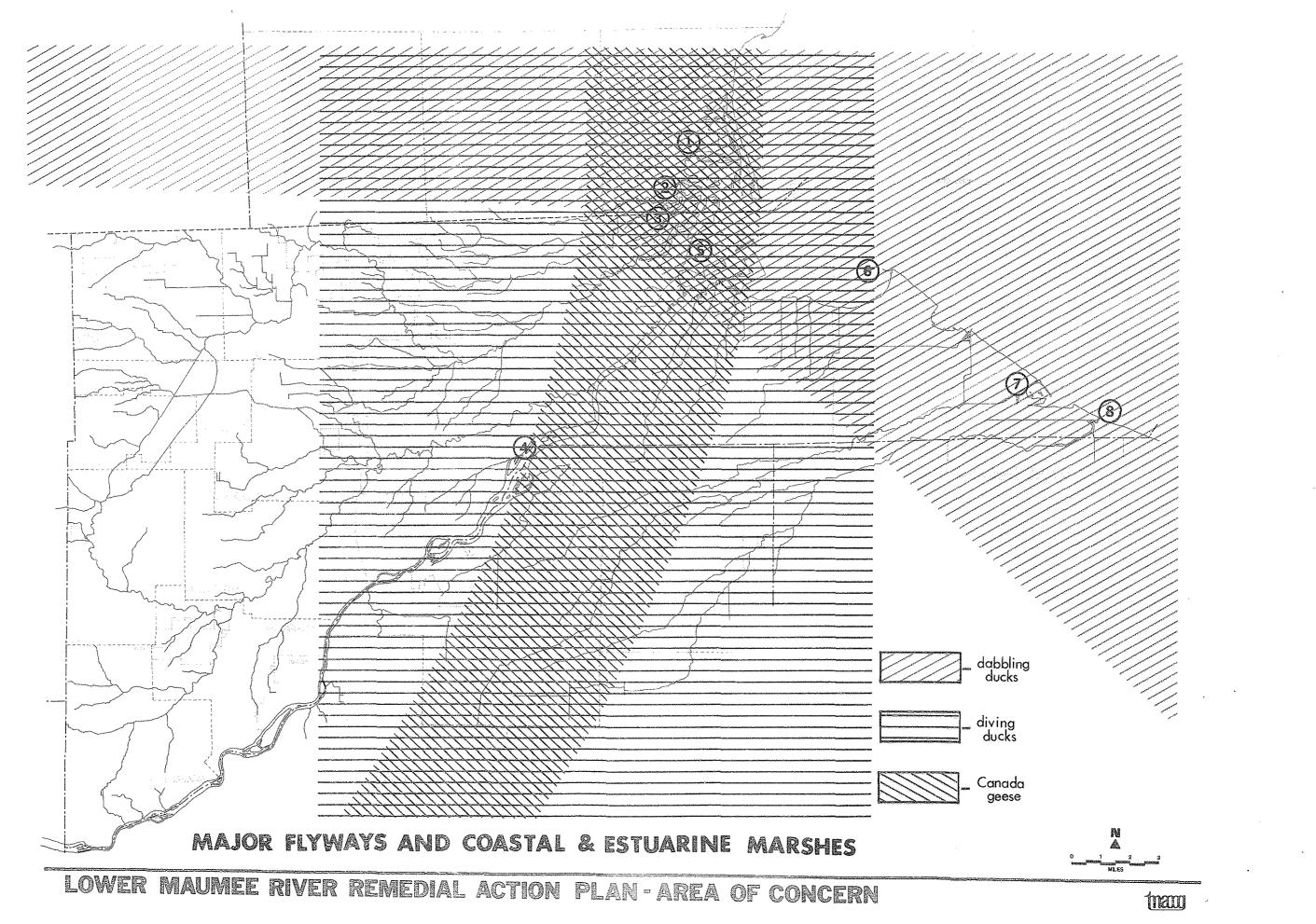
Farnsworth Metropark is also located in this stream segment southwest of the Village of Waterville. Farnsworth is an important area for canoeing, wildlife watching and summer shore bird watching. The area around Farnsworth is important for duck hunting.

Ottawa River

Like the Maumee River, the Ottawa River is important for non-contact recreation such as sailing and power boating. Boating is mostly restricted to the area down stream from Suder Avenue due to the difficulty of getting large boats past that point. Smaller boats can make it upstream as far as Stickney Avenue and just beyond. The primary boating lanes are down stream from Suder Avenue to the Bay. The Ottawa River was one of the most important water skiing areas in the region, however, water skiing and other contact activities no longer occur to any large extent due to severe water pollution. The City of Toledo has posted the area near the Dura Landfill advising persons to avoid contact with the water, sediment and fish.

Farther up stream, the Ottawa River flows through the Wildwood Preserve Metropark north of the Village of Ottawa Hills. The major activities at the park include wildlife observation and hiking. The park also serves as an important wildlife corridor for animals such as deer.

Swan Creek


Due to water pollution problems and the physical characteristics of Swan Creek, contact and non contact recreational use of Swan Creek is uncommon. The upper reaches of Swan Creek however do have important aesthetic values. The Swan Creek Preserve Metropark is located in the western portion of the City of Toledo in a rapidly developing urban area. Swan Creek flows through this park and is its primary natural feature. The park is an important resource for the area not only because of its location, but also because it is probably the best example of flood plain habitat in the region.

Swan Creek also flows through the Oak Openings Preserve Metropark in western Lucas

Coastal and Estuarine Marshes

The Maumee Bay lies at the mouth of the Maumee River and is formed by Little Cedar Point on the east and Woodtick Peninsula on the west. These two sand spits provide the shelter necessary for wetland development on their landward side. The former lies within the Cedar Point National Wildlife Refuge (administered as part of the Ottawa National Wildlife Refuge) and the latter lies partially within the Erie State Game Area (administered by the Michigan Department of National Resources). The Cedar Point marshes extend westward along the south shore of the bay to Maumee Bay State Park. Estuarine wetlands also occur along the Maumee River valley, between Rossford and the first bedrock riffles at Perrysburg, and in the lower reaches of the Ottawa River.¹⁴

The marshes in the bay are protected by dikes and are managed for waterfowl. The estuarine wetlands are more undisturbed wherein the water level is not controlled. At one time the Ohio shoreline of western Lake Erie in its natural state was generally a marsh area fronted by low barrier beaches. Today there are some 23 square miles of coastal and estuarine marshes remaining which are depicted in Figure 5. These eight areas as numbered on the map are described in Table 12.¹⁴

TABLE 12 COASTAL AND ESTUARINE MARSHES

Map	No. Name	Ownership	Size	Water Level Control
1	Woodtick Peninsula Marsh	SC/PM	L	Diked/Uncontrolled
2	North Maumee Bay Marsh	C/PM	L	Diked/Uncontrolled
3	Ottawa River Estuary	РМ	S	Uncontrolled
4	Maumee River Estuary	РМ	L	Uncontrolled
5	Toledo Harbor Wetlands (spoil area)	F/M PS	S	Diked
6	Cedar Point Marsh	F	L	Diked
7	Metzger Marsh	S	S	Diked
8	Ottawa Marsh	F	L	Diked
	SC - Shooting Club PM - Private, mult F/M - Federal/Munic F - Federal S - State	iple owners ipal		

- PS Private, single owner
- Over 1,235.5 Acres (500 ha)
- S Under 1,235.5 Acres (500 ha)

Adapted from Appendix B, The Ecology of the Coastal Marshes of Western Lake Erie: a Community Profile, Biological Report 85(7.9), February 1987.

The major plant species thriving in the Maumee Bay marshes include narrow-leaf cattail, broad-leaved cattail, jewelweeds, swamp rosemallow, blue-joint grass and swamp milk-weed. In the transition zone between open water and the cattail stands, soft-stem bulrush and three-square bulrush are the dominant species.¹⁴

Fish found in the Maumee Bay wetlands include: bowfin, carp, yellow perch, largemouth bass, white bass, green sunfish, yellow bullhead, gizzard shad and walleye.¹⁴

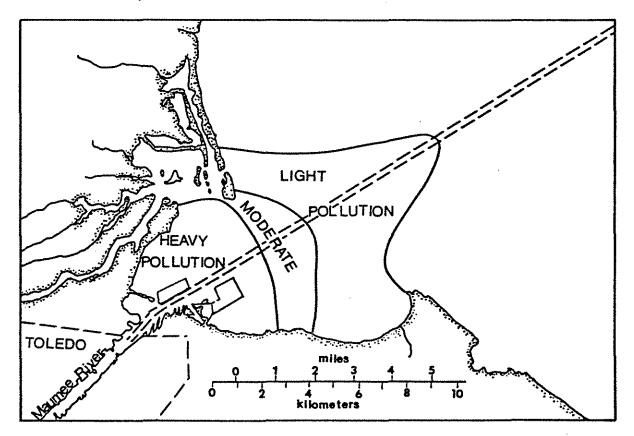
The most common waterfowl are mallard, black duck, green-winged teal, blue-winged teal, northern shoveler, and American coot. Tundra swans and snow geese also utilize the area for resting during spring migration. The historical occurrence of the rare Foster's tern has been reported for these wetlands (Campbell and Trautman 1936). A bald eagle nest is active on Little Cedar Point.¹⁴

These wetlands are also a part of two major flyways, the Atlantic and the Mississippi (see figure 5). Western Lake Erie marshes attract large numbers of migratory waterfowl, causing a crossing point of these two flyways, as shown on Figure 5. Basically, there are four distinctive flyways identified for North America. Each flyway has its own individual population of birds making the semiannual flights between breeding grounds and wintering grounds.¹⁴

Canada geese and diving ducks, including canvasbacks, redheads and scaup, come from

Canada geese and diving ducks, including canvasbacks, redheads and scaup, come from their breeding grounds on the great northern plains of central Canada on the Atlantic flyway to winter over in the Chesapeake and Delaware Bays. The dabbling ducks such as mallards, black ducks and bluewinged teals that have gathered in southern Ontario during the fall, cross western Lake Erie and proceed southwest to the Mississippi delta and the Gulf of Mexico coasts.¹⁴

Coastal marshes and stream mouths commonly attract migrating dabbling ducks, with the diving ducks concentrating on the open water shorelines. Canada geese and mallards also feed heavily on waste grains in agricultural fields.¹⁴


Wading birds such as herons and egrets arrive in the western Lake Erie region in early March and migrate southward in October. Upon their arrival, court- ships and nest building begin immediately. They usually forage on the shorelines of the tributary streams and coastal marshes, feeding upon fish and insects.¹⁴

Gulls and terns also use these coastal marshes, but the ring-billed gull are becoming more common and are now known to use the Toledo-Lucas County Port Authority Facility No. 3 (dredge disposal facility). Terns also use the diked spoil areas near the Toledo Harbor. Herring gulls are also prevalent and feed on dead fish, refuse and other organic debris along the shoreline, including landfills as their food supply.¹⁴

The estuarine and coastal marshes of Western Lake Erie serve as sinks for many of pollutants. Maumee Bay exhibits elevated numbers of tubificid worms, an indication of high organic pollution. Note Figure 6 which displays pollution zones in the Maumee Bay as indicated by concentration of tubificids (sludge worms) in the bottom sediments 14,15. Turbidity throughout Maumee Bay and many of the estuarine and coastal marshes is high. The average concentration of suspended solids in Maumee Bay is 37 milligrams per liter (mg/l), but nearshore levels are generally over 50 mg/l.¹⁴

FIGURE 6

POLLUTION IN MAUMEE BAY AS INDICATED BY CONCENTRATION OF TUBIFICIDS (SLUDGE WORMS) IN THE BOTTOM SEDIMENTS. (WRIGHT 1955; PINSAK AND MEYER 1976).

LIGHT = 100 - 999 Tubificidae per square meter MODERATE = 1,000 - 5,000 HEAVY = more than 5,000

Source: Maumee River Basin Level B Study.

WATER QUALITY STANDARDS

Most of the streams in the Maumee Basin RAP Area are classified as Warmwater Habitat, Agricultural Water Supply. The reaches of the Maumee in the immediate vicinity of the Bowling Green and Waterville intakes are classified as Public Water Supply. There are standards that apply for many water quality parameters depending on the stream reach's classification for habitation, water supply, and contact type. Table 13 gives the water quality standards that apply to *most* streams in the RAP Area. For an exhaustive listing of all water quality standards, refer to the Water Quality Standards in the Ohio Revised Code.¹⁰

TABLE 13WATER QUALITY STANDARDS

Parameters for which Warmwater Habitat Standard is Critical

Water Quality Parameter	Average	Maximum
Free CN, μg/l DO, mg/l (minimum values) TDS, mg/l Fe, total recoverable, mg/l Pb, total recoverable, μg/l	8.1 5.0 1500 1.0 30	38 4.0
MBAS, mg/l Cl, residual, μ g/l Cr, hex., dissolvable, μ g/l Hg, total recoverable, μ g/l Oil & Grease, mg/l	11 10 0.2 10 10	0.5 19 19 2.2
Phenol, $\mu g/l$ P Polychlorinated biphenyls, (PCBs) $\mu g/l$ Ag, total recoverable, $\mu g/l$	see note below	0.001 Depends on CaCO ₃
pH Standards that Depend on Hardness	<u>Minimum</u> 6.5	<u>Maximum</u> 9.0
	@ 200 ppm <u>as CaCO</u> 3	@ 400 ppm <u>as CaCO</u> 3
Cu, total recoverable, $\mu g/l$ Ag, total recoverable, $\mu g/l$ Zn, total recoverable, $\mu g/l$	29 5.3 495	55 17 880

Parameters for which Agricultural Water Supply Standard is Critical

Water Quality Parameter	Average	Maximum
Arsenic, As, total recoverable, $\mu g/l$ Beryllium, Be, total recoverable, $\mu g/l$ Cadmium, Cd, total recoverable, $\mu g/l$ Chromium, Cr, total recoverable, $\mu g/l$ Nickel, Ni, total recoverable, $\mu g/l$ Selenium, Se, total recoverable, $\mu g/l$		100 100 50 400 200 50

TABLE 13 continued

Phosphorus

There is no specific water quality standard for phosphorus. OEPA's Water Quality Standards state: "Total phosphorus as P shall be limited to the extent necessary to prevent nuisance growths of algae, weeds, and slimes that result in a violation of the water quality criteria ... or, for public water supplies, that result in taste or odor problems. In areas where such nuisance growths exist, phosphorus discharges from point sources determined significant by OEPA shall not exceed a daily average of 1.0 ppm.. or such stricter requirements as may be imposed by OEPA ..."

Ammonia: NH3

 NH_3 water quality standards depend on the temperature of the water, its pH, and what time of year it is. Related note: No NO₃ standard is given here, but OEPA requires the community to issue a drinking water warning when NO₃ level rises above 10 ppm.

	DecFeb.	March-Nov.
@ pH 7.0 and 25°C		2.9 ppm
$\overset{\circ}{@}$ pH 8.0 and 0-10°C	3.3 ppm	2.4 ppm
@ pH 8.0 and 25°C		0.8 ppm
@ pH 7.5 and 25°C		1.8 ppm

These are *examples* of average NH_3 standards. Ohio Water Quality Standards contain full information in its 7-3. Maximum concentrations for NH_3 are presented in Table 7-5 of the Water Quality Standards.

Nitrate and Nitrite: NO₃+NO₂

For most stream reaches in the AOC, the Agricultural Water Supply standard of 100 ppm would apply. For the reaches that are used for public water supply, the standard is 10 ppm.

Bacterial Standards

Bacterial:	<i>Fecal Coliform</i> #/1000 ml <u>Avg Max</u>	<i>E. Coli</i> #/1000 ml <u>Avg Max</u>
Bathing waters Primary Contact Secondary Contact	200 400 1000 2000 5000	$\begin{array}{rrrr} 126 & 235 \\ 126 & 298 \\ 126 & 576 \end{array}$

Sediment Quality Guidelines

Metal	Non- Elevated	Slightly Elevated	Elevated	Highly Elevated	Extreme Elevated
As Cd Cr	< 13 < 0.38 < 9	>13 >0.38 >9	>18 >0.60 >11	>28 >1.03 >16	>47 >1.90 >24
Cu	< 15	>15	≥19	≥27	- 544
Fe Pb	< 27,724 < 21	≥27,724 ≥21	≥36,112 ≥28	≥52,887 ≥43	≥86,439 ≥73
Zn	< 83	≥83	≥108	≥156	≥253

Sediment metal guidelines are in units of are $\mu g/l$.

Pesticides

Pesticide	Public Water Supply ^a , µg/l	Aquatic Life <u>Habitat, µg/l</u>
Aldrin ^b	0.000074 ^c	0.01
Benzene Hexachloride		0.1
Chlordane	0.00046 ^c	0.01
Chlorophenoxy herbicides		
2.4-D	100.0	
2,4,5-TP (Silvex) ^b	10.0	
Ciodrin		0.1
Coumaphos	** **	0.001
Dalapon		110.0
DDT ^b	0.000024 ^c	0.001
Demeton		0.1
Diazinon	we nix	0.009
Dicamba		200.0
Dichlorvos		0.001
Dieldrin ^b	0.000071 ^c	0.005
Diquat		0.5
Dursban	~~ 4	0.001
Endosulfan	74	0.003
Endrin	1.0	0.002
Guthion	 0.00000C	0.005
Heptachlor ^b	0.00028 ^c	0.001
Heptachlor Epoxide	0.1	
Lindane	0.019 ^c	0.01
Malathion	 100.0	0.1
Methoxychlor	100.0	0.005
Mirex		0.001
Naled		0.004
Parathion Bhomhamidan	tan me	0.008
Phosphamidon		0.03 10.0
Simazine TEPP	Ann Ann	0.4
	0.00071 ^c	0.4
Toxaphene	0.00071-	0.005

^a Pesticides are not to exceed the concentrations in this table, or the Safe Drinking Water Act, whichever is more stringent.

b Use has been banned.

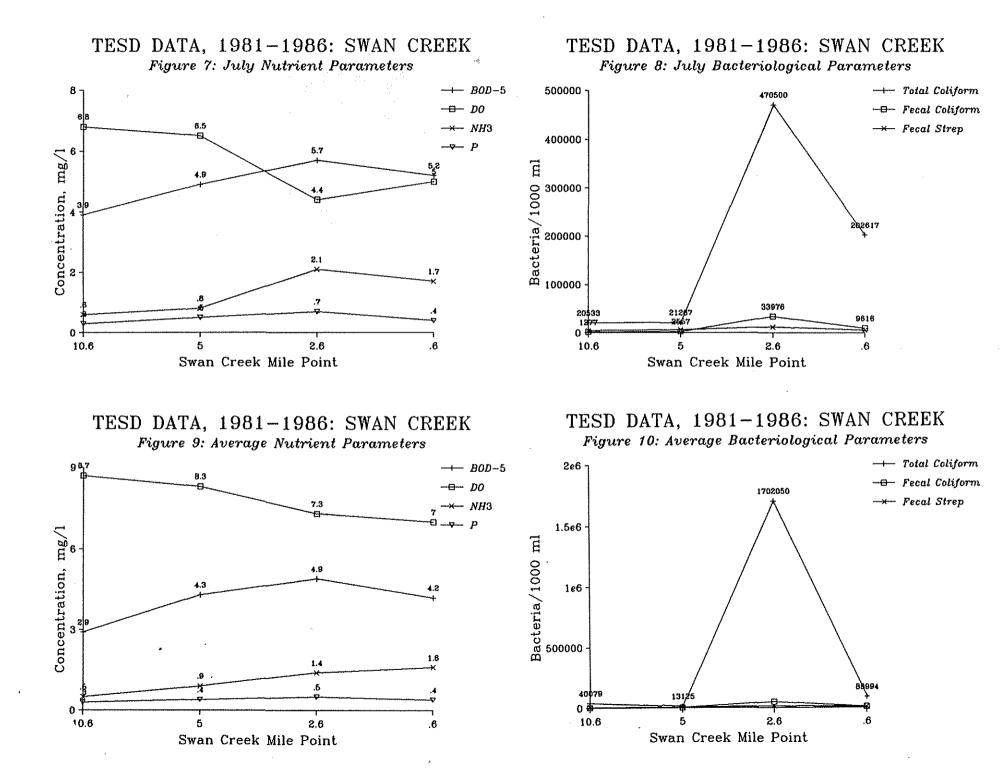
^c For protection of human health from the potential carcinogenic effects, at a 10⁶ incremental increase of cancer risk over the lifetime, due to exposure through ingestion of contaminated water and contaminated aquatic organisms.

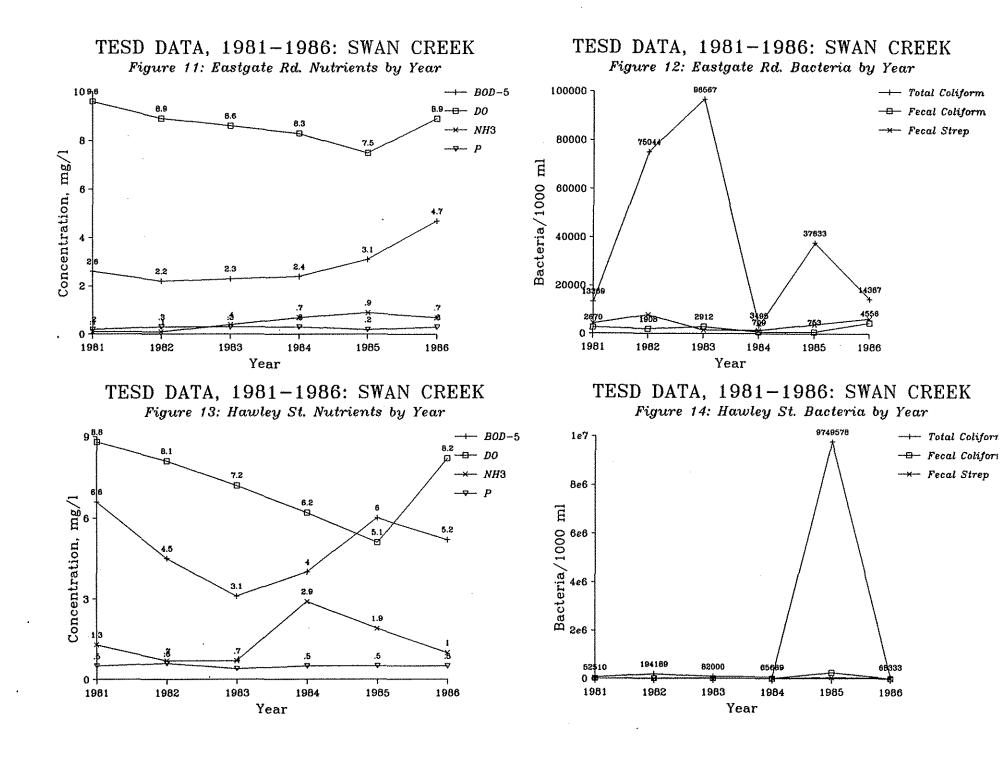
EXISTING WATER QUALITY DATA: A Summary

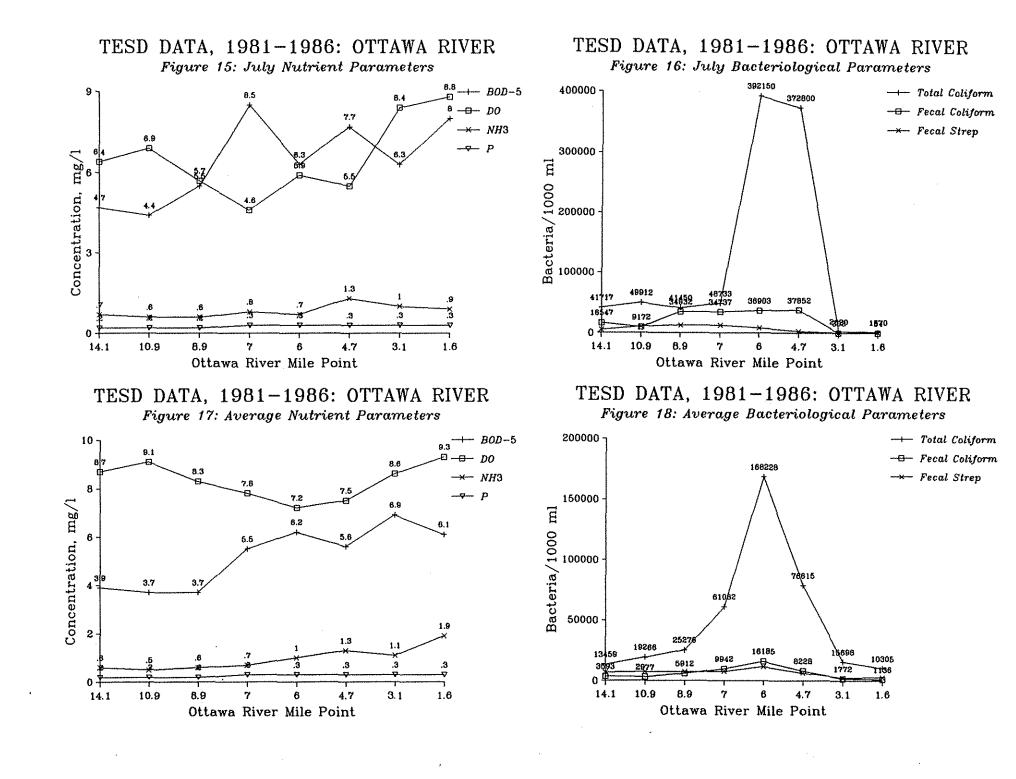
The TMACOG Inventory of Water Quality Monitoring Sites and Sampling Programs¹⁷ (1988) lists a large number of sampling sites in the Maumee Basin Area of Concern. The major monitoring programs are summarized below:

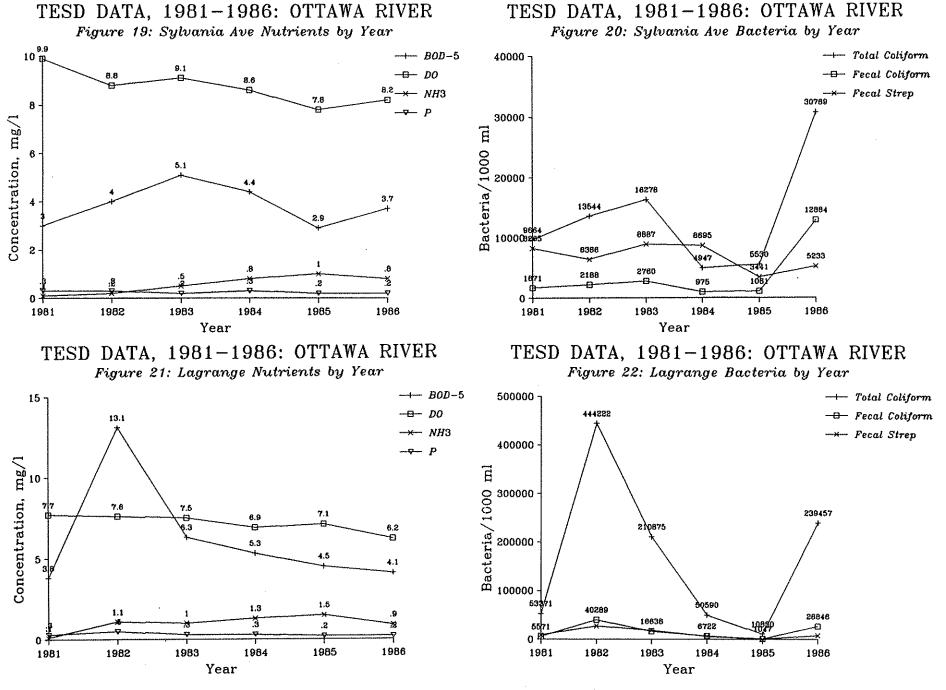
ON-GOING MONITORING PROGRAMS

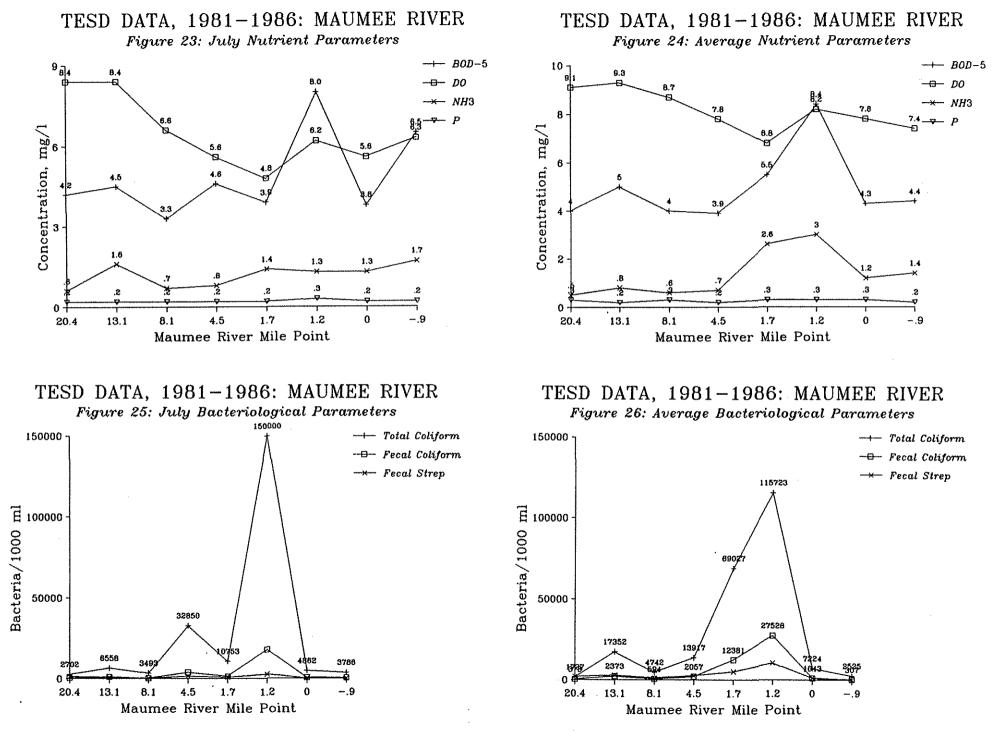
Toledo Environmental Services Division (TESD)

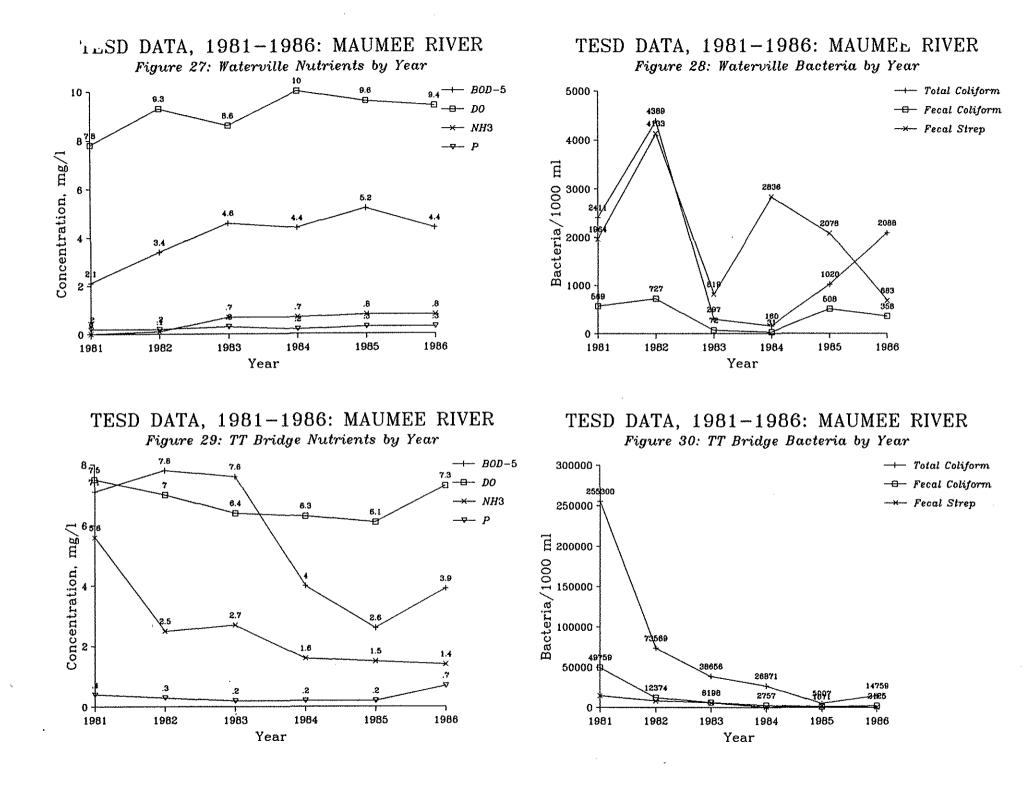

The most substantial body of water quality data for the Toledo area is that analyzed by TESD. Water is sampled and analyzed from approximately monthly, to less than eleven to nine times per year. Parameters include conventional pollutants: BOD₅, P, NO₂, NO₃, NH₃, DO, Cl⁻, SS, and bacterial counts.

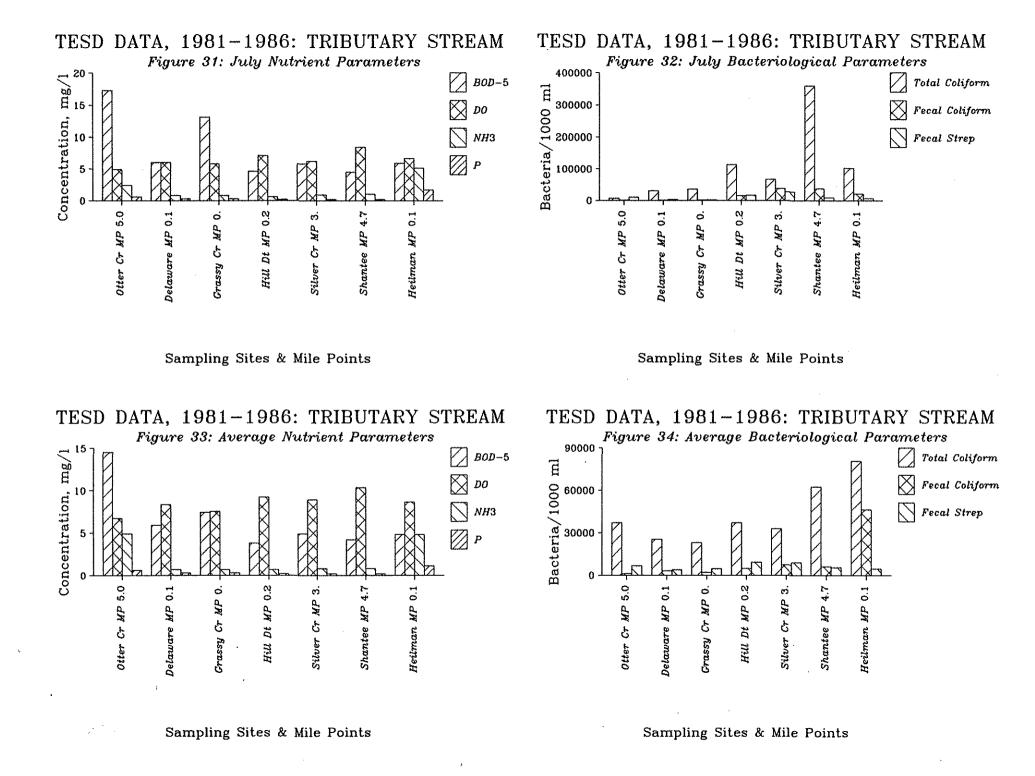

TESD Monitoring Sites


Maumee River: Otter Creek Delaware Creek Grassy Creek	8 stations from Mouth to Waterville 1 station 1 station 1 station
Ottawa River Hill Ditch	8 stations from Summit St to Sylvania Ave 1 station
Swan Creek Heilman Ditch	4 stations from St. Clair St. to Eastgate Road 1 station
Silver Creek	1 station
Shantee Creek	1 station


TESD data are published in six-year intervals¹⁸ and are not reprinted in this report. Figures 7-34 summarize the 1981-1986 data. There are four sets of graphs: Swan Creek, Tenmile Creek/Ottawa River, Maumee River, and other tributaries. There are eight graphs in each group. For Swan Creek (Figures 7-14), the graphs first display the 1981-86 average July Nutrients (BOD₅, DO, NH₃ and P) and average July Bacteria counts by concentration and river mile. July averages are used because low stream flows and high temperatures create "worse case" conditions. The second set displays the six year average for nutrients and bacteria counts by concentration and river mile. The third set displays the yearly concentrations for nutrients and bacteria counts for an upstream station, while the fourth set displays these same parameters for a downstream station which show the poorest water quality.


These data are then displayed for Ottawa River (Figures 15-22) and the Maumee River (Figures 23-30), applying the same format as used for Swan Creek. The graphs (Figures 31-34), display these same data for Otter Creek, Delaware Creek, Grassy Creek, Hill Ditch, Silver Creek, Shantee Creek and Heilman Ditch.





United States Geological Survey (USGS)

USGS has an on-going sampling network, although the number of sites and amount of monitoring done has been decreasing over the years. Monitoring stations in the Maumee RAP Area include:

Maumee River	Mile point 22.8 above Waterville mile point 20.8 at Waterville mouth of the Maumee (discontinued 1975)
Ottawa River	mile point 10.8 at U.T. bridge (1977 only)
Crane Creek	near Curtice in Ottawa County; sampled semi-annually from 1980-82. Parameters: DO, Ca, Mg, Na, K, SO ₄ , Cl, F, TDS, TKN, NH ₃ , NO ₃ + NO ₂ , P, Fe, Mn.
Cedar Creek	mile point 6.9 at Curtice in Lucas County. Same monitoring details as Crane Creek site.

Only conductance, pH, temperature, and DO are sampled above Waterville. Conventional pollutants and metals (As, Ba, Cd, Cr, Cu, Fe Pb, Mn, Hg, Se, Ag, Zn) are monitored at the Waterville site; these parameters were also sampled at the two other discontinued sites.

Ohio State University Center for Lake Erie Area Research (CLEAR)

CLEAR does primarily open-lake and near-shore water quality studies. Their most intensive period of monitoring activity within the Maumee RAP Area was in 1975. Sampling that year included many sites in Maumee Bay and in the river itself as far upstream as Perrysburg (mile point 12). Sampling included conventional pollutants, and fecal coliform. It is no longer an on-going program.

Ohio EPA 305b Water Quality Inventories

Ohio EPA publishes a biannual report on the status of the various stream reaches in Ohio. The purpose of this report is to establish whether Ohio surface waters are meeting the "fishable, swimmable" criteria of the Clean Water Act (CWA). The 1986 305b report's assessment of water quality for Maumee/Ottawa River Basin is shown in Table 14.

Use Attainment		ALL ST <u>Miles</u>	[REAMS <u>% Total</u>	PRINCIPA <u>Miles</u>	_ STREAMS <u>% Total</u>
Meets CWA Criteria:	Yes Partial No	564 287 <u>153</u>	25 12 7	373 180 65	49 24 8
Total evaluated		1004	44	618	8i .

TABLE 141986 305b ASSESSMENTS OF WATER QUALITY

The area covered by the biennial report includes the Maumee Basin in Ohio which is substantially larger than the RAP Area. It includes all of Fulton, Henry, Defiance, Paulding, Putnam, Van Wert, and Allen Counties, and large portions of Lucas, Wood, Hancock, Auglaize, and Mercer Counties. The Ottawa River mentioned refers to the Ottawa River that flows through Lima, not the Ottawa River in Lucas County known locally as Tenmile Creek. The 305b study summarizes the conditions of stream segments in the RAP Area. These summaries are shown in Table 15 by stream reach and includes the stream designations and the Clean Water Act (CWA) use attainment. Cedar and Crane Creeks, which the 305b classifies as being in the Portage River Basin, were not evaluated.

TABLE 151986 305b SUMMARIES

STREAM	MILE POINTS	REACH	COND.	CWA	DESG
Maumee	14.1-37.7	Maumee-Perrysburg Bridge-Napoleon	Good	Yes	WWH
Maumee	7.2-14.1	Estuary reach	Fair	Part.	WWH
Maumee	0.0-7.2	Ship channel	Fair	Part.	WWH
Maumee Bay			Fair	Part.	ELEH
Swan Creek		I-475 to headwaters	Fair	Part.	WWH
<u>Swan Creek</u>	0.0-14.0	Mouth to I-475	Poor	No	WWH

Heidelberg College River Studies Laboratory

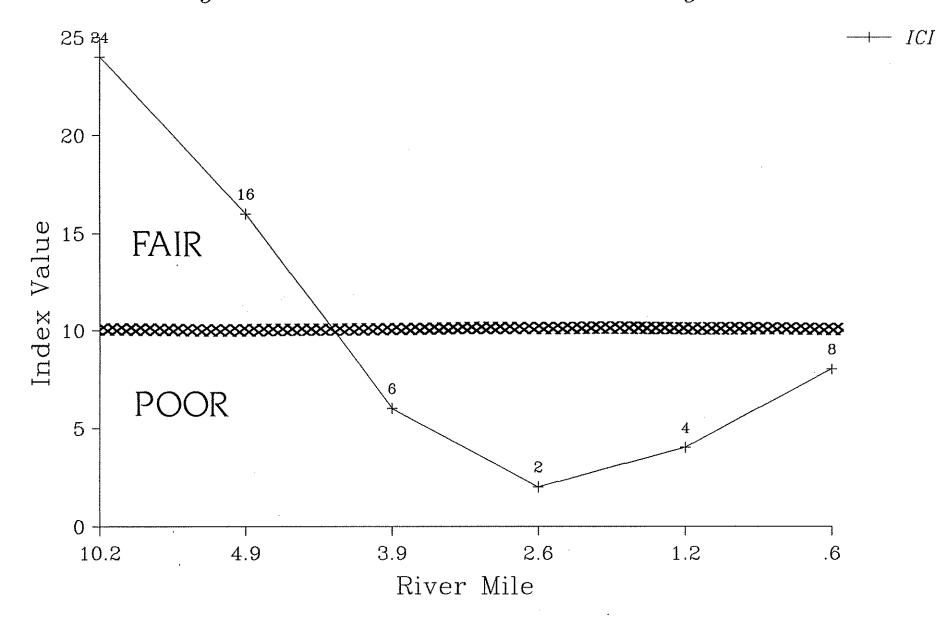
The Water Quality Laboratory at Heidelberg College has contributed significant research on the movement and loadings of sediment, nutrients, and more recently pesticides in the Maumee River Basin. Utilizing the data available from the U.S. Geological Survey at the Waterville Survey Station and data collected by the Water Quality Laboratory,³ they have analyzed sediment, phosphorus, nitrogen, chlorides, and 19 different pesticides. These data provide a record of water quality conditions in the Maumee River and have been collected continuously throughout the years which allows for the development of loading data. These data have been used extensively in the Agricultural Pollution Abatement section of this report. Major reports of these data are included in several documents available from the Water Quality Laboratory.¹⁹, 20, 21

INTENSIVE OR SHORT-TERM MONITORING SURVEYS

There has been a substantial body of water quality data collected since 1970 through various one-time sampling programs.

Maumee Basin Biological Water Quality Report (BWQR)

Ohio EPA has established five different classes for its biological criteria (fish) for determining water quality use designations and attainment of the Clean Water Act (CWA) goals. Class I (Exceptional) and Class II (Good) meets CWA goals. Class III (Fair), Class IV (Poor) and Class V (Very Poor) do not meet CWA goals. For formal use attainment assessment, Ohio EPA uses both fish (IBI and IWB) indices and invertebrates (ICI). For full attainment, all three indices must meet the criteria. For partial attainment, at least one index meets the criteria with the other two indicating at least fair performance. For nonattainment, none of the indices meet criteria or one or two indicate very poor or poor performance.


As a part of its Biological and Water Quality Report, Ohio EPA analyzed sediments for heavy metal concentrations in early 1987 at certain stations on the Maumee River (Grand Rapids Dam, Eagle Point Colony, Cherry Street Bridge and Toledo WWTP), Swan Creek (at Collingwood Blvd.), Ottawa River (Lagrange Street and Stickney Avenue), Otter Creek (Oakdale Avenue, Wheeling Street, and Millard Avenue), and Duck Creek (York Street). A summary of water quality data collected for the BWQR is presented in Table 16. BWQR data is plotted by river miles in Figures 35 to 43. Parameters are plotted for the three major streams: Swan Creek, Tenmile Creek/Ottawa River, and the Maumee River. There are three figures for each: Invertebrate Community Index (ICI), Macroinvertebrate Densities, and Sediment Metals.

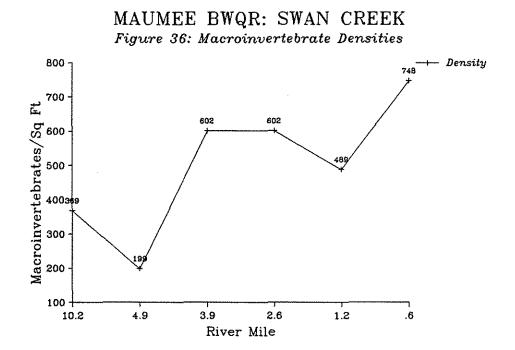
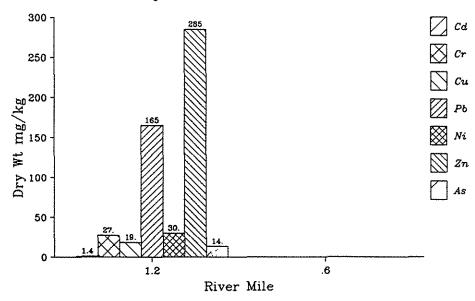
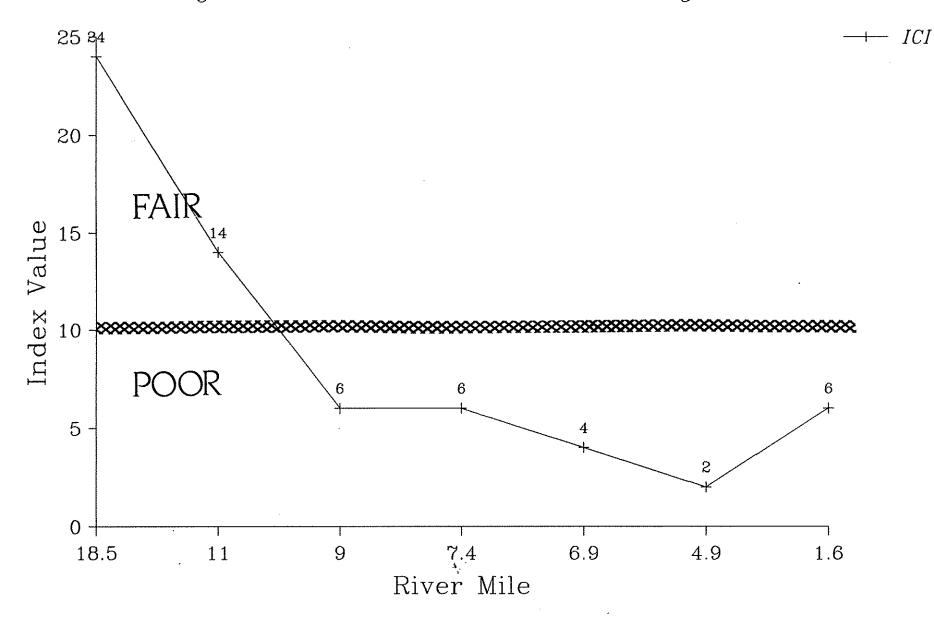
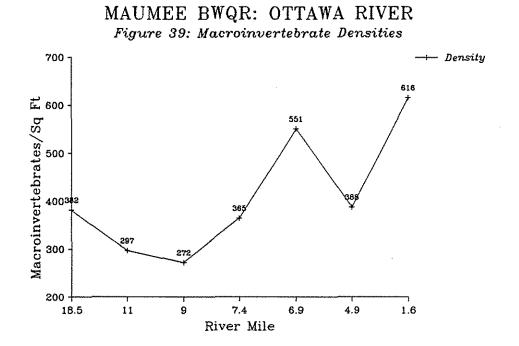

The ICI and Macroinvertebrate Densities get to the heart of measuring a stream's water quality. They indicate the ability of the stream to sustain life. High values for these indices indicate good water quality. The sediment metal data is a measure of accumulated metals at the bottom of the stream. The metals tested are toxic, so low values indicate a good environment for bottom-dwelling animals.

TABLE 16LOWER MAUMEE BIOLOGICAL WATER QUALITY REPORT

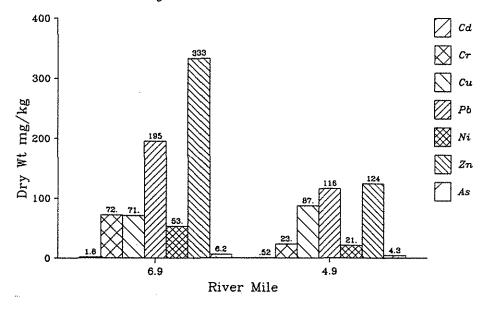

STREAM	LOCATION	RATING	BANK	MILE	101	DENSITY	Cd	Cr	Cu	Pb	Ni	Zn	As
laumee	Grand Rapids Dam	Good		32.1	42	1697	.24	5.9	5.3	15.3	4.8	24.5	
laumee	Woodcock Island	Excellent		25.1	52	1384							
laumee	SR 64	Excellent		20.9	54	1627							
laumee	US 20	Good		15	24	544							
laumee	Maple St. Boat Launch	Good	S	13.6	20	405							
laumee	Carey St. Boat Launch	Marginally Good	N	13.3	14	467							
laumee	Eagle Point	Fair		9.4			.95	43.2	36.3	52.3	44.8	178	21.
laumee	Walbridge Park	Marginally Good	N	8.8	18	913							
laumee	Libbey-Owens-Ford	Fair	S	7.3	12	688							
laumee	I-75	Marginally Fair	N	7.2	8	440							
laumee	Cherry St. Bridge	Marginally Fair	N	4.7	8	544	1.52	33.4	65.3	108	34.4	190	10.
laumee	Consaul St.	Fair	S	3.6	- 14	706							
faumee	Riverside Park	Marginally Fair	N	3.1	10	387							
laumee	Harrison Marina	Marginally Fair	N	1.5	6	579							
laumee	Bay View Park	Marginally Good	N	.7	16	1166	1.46	57.2	45.5	52.5	46.2	384	12.
Swan Creek	Eastgate Road	Fair		10.2	24	369							
Swan Creek	Detroit Ave.	Fair		4.9	16	199							
Swan Creek	Champion St.	Poor		3.9	6	602							
Swan Creek	Hawley St.	Poor		2.6	2	602							
Swan Creek	Collingwood Blvd.	Poor		1.2	4	489	1.39	27.2	18.6	165	29.8	285	13.
Swan Creek	Mouth	Poor		.6	8	748							
)uck Creek	Wheeling Road	Very poor		3	0	145							
Duck Creek	York Street	Poor		2.1	12	190	.6	14	21.2	72.8	14	115	13.
Duck Creek	Port Authority	Poor		.4	4	43							
Otter Creek	East Broadway	Fair		7.2	15								
Otter Creek	Oakdale Ave.	Very poor		6	0	0	.52	32	30	49	22	170	26.
)tter Creek	Wheeling Road	Very poor		4	0	166	.66	149	46	142	26	163	14.
Otter Creek	Millard Ave.	Very poor		2	0	1623	.53	54	71	68	19	129	7.7
)tter Creek	Mouth	Very poor		.3	0	299							
Tenmile Creek	Centennial Road	Fair/marg. good		5.1	28								
renmile Creek	Sylvania Ave.	Fair/marg. good		4.1	35								
fenmile Creek	Old Post Road	Marginally Good		1	36								
)ttawa River	Sturbridge Road	Fair		18.5	24	382							
)ttawa River	Centennial Hall, UT	Fair		11	14	297							
	South Cove Blvd.	Poor		9	6	272					•		
)ttawa River		Poor		7.4	6	365							
	Lagrange St.	Poor		6.9	4	551	1.77	72.2	71.4	195	53.4	333	6.2
	Stickney Ave.	Poor		4.9	2	388				116			
)ttawa River	•	Poor		1.6	6	616						*****	
Cedar Creek	US 20	Good		20	34	90							

MAUMEE BWQR: SWAN CREEK Figure 35: Invertebrate Community Index

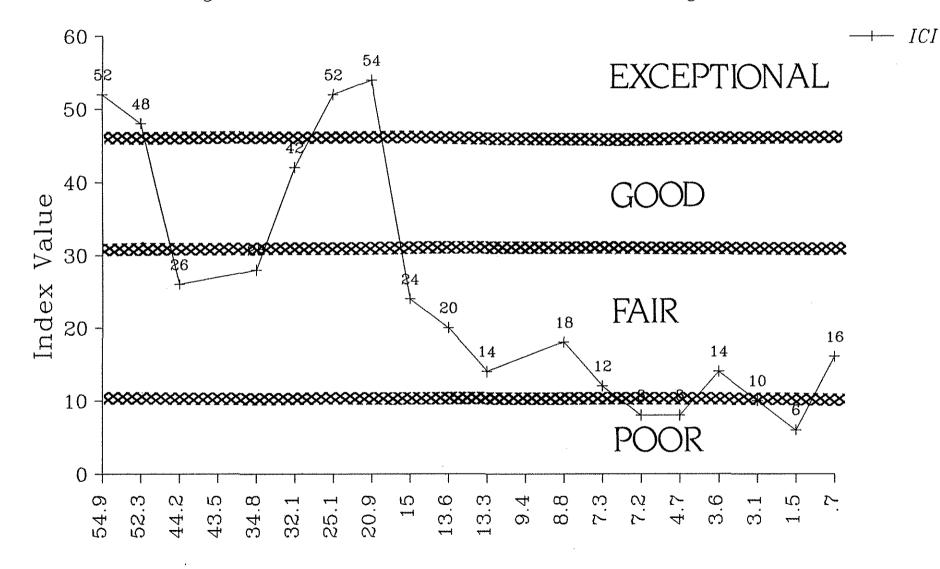




MAUMEE BWQR: SWAN CREEK Figure 37: Sediment Metals



MAUMEE BWQR: OTTAWA RIVER Figure 38: Invertebrate Community Index




MAUMEE BWQR: OTTAWA RIVER Figure 40: Sediment Metals


MAUMEE BWQR: MAUMEE RIVER Figure 41: Invertebrate Community Index

River Mile

River Mile

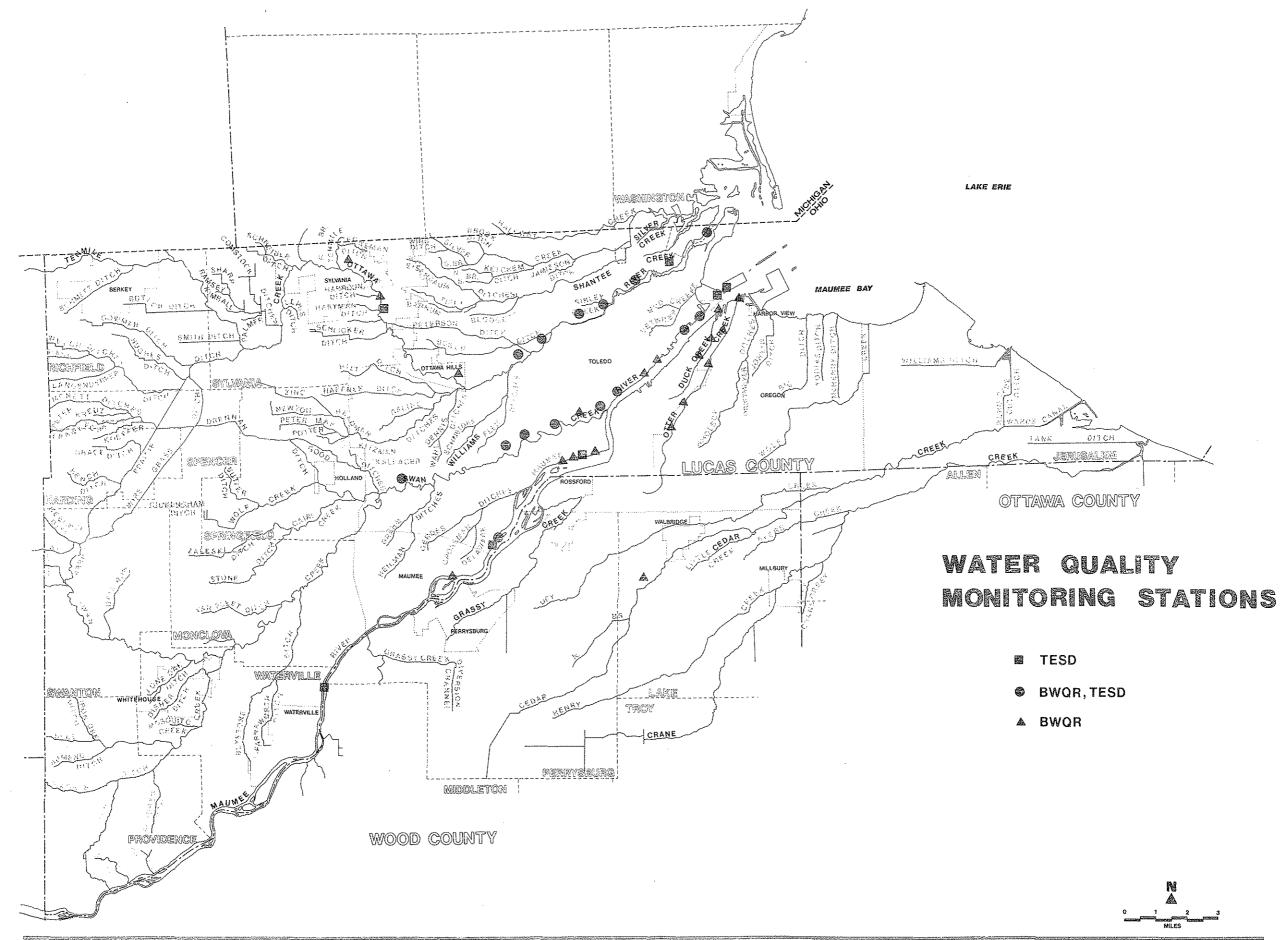
River Mile

9.4 8.8

15

34.8

32.1 25.1


3.1

Ohio EPA also analyzed sediment samples from the Maumee River, Swan Creek, and the Ottawa River for a variety of volatile organic compounds. The complete sampling records are presented in Appendix A. Table 17 gives the sediment data in summary form, listing only those samples where detectable amounts of the volatile organics were found. A summary of the draft *BWQR Report* is presented in Appendix G. It presents Ohio EPA's field observations and a discussion of the data in greater detail.

		TABLE 17		
BWQR	SEDIMENTS:	PRIORITY	POLLUTANT	DATA

CAS	Volatile Corpound Co	TC 1	Conc	Carc	Conc	Conc	Carc	Ore	Carc	Carc	Conc
Nutber	<i>µ</i> 9	/kg	µg/kg	µg/kg	µg∕kg	µg/kg	µg∕kg	µg/kg	µg/kg	µg/kg	µg/kg
	Streen 🛲 Me		Maunee	Mauree	Sven	Sien	Otter	Otter	Otter	Ottava	Ottala
	River Mile> 9		4.9	1	1.2	1.2	5.9	4	2.1	6.4	4.9
	Station	gle Pt	therry S	t W/IP	Collingu	od Collingua	od Oskoble	Wheeling	Millard	Lagrange	Stidney
67-64-1	Acetone		44			38	49				
108-05-4	Vinyl Acetate					 39	12				
79-01-6	Trichlorcethere				(1 9)]-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
108-88-3		300			<u>ب</u> ري				320		
108-95-2	Pheroi								890		
106-44-5	4-Methylphenol			1400					1700		
91-57-6	2-Methylinarhthalene		790	,							
83-32-9	Acementheme		1400			5300					
132-64-9	Diberzofuran		1300			4900					
86-73-7	Fluorene		200			7500					
85-01-8	Pherenthrene		11000	1000		29000	8700	2300		2800	4100
120-12-7	Anthracene						1900	830			
206-44-0	Fluoranthere		11000	2100		2600	12000	3500		6900	5400
129-00-0	Pyrene		7300	1900		22000	7500	3700	710		4900
85-68-7	Butylberzylphthalate										4300
56-55-3	Benzo(a)anthracene		3900	1000		11000	5000	1800			3200
117-81-7	Bis(2-ethylhexyl) Phthalate (DEHP)						650			
218-01-9	Chrysene		4000	1000		8800	3400	1700			2800
117-84-0	Di-n-octyl Phthalate			1200							3600
205-99-2	Benzo(b)Fluoranthene		1900	2000		<i>6</i> 500	3500				
207-08-9	Berzo(k)Fluoranthene		2500	880		4400	2700				
50-32-8	Benzo(a)Pyrene		2300	99 0		4800	2900	1000			1800
193-39-5	Indeno(1,2,3-co)Pyrene		1500	910			2200	680			1700
53-70-3	Diberz(a,h)Anthracere		970	890			1000				
191-24-2	Benzo(g,h,i)Perylene		1800	1100			2600	750			1800
53469-21-9	Aroctor-1242					1600					2500

Figure 44 shows the sampling sites for both TESD and Ohio EPA for the major waterways. The "square" indicates only TESD sites, the "circle" indicates both agencies, while the "triangle" indicates the sampling sites for the BWQR investigative team.

LOWER MAUMEE RIVER REMEDIAL ACTION PLAN-AREA OF CONCERN

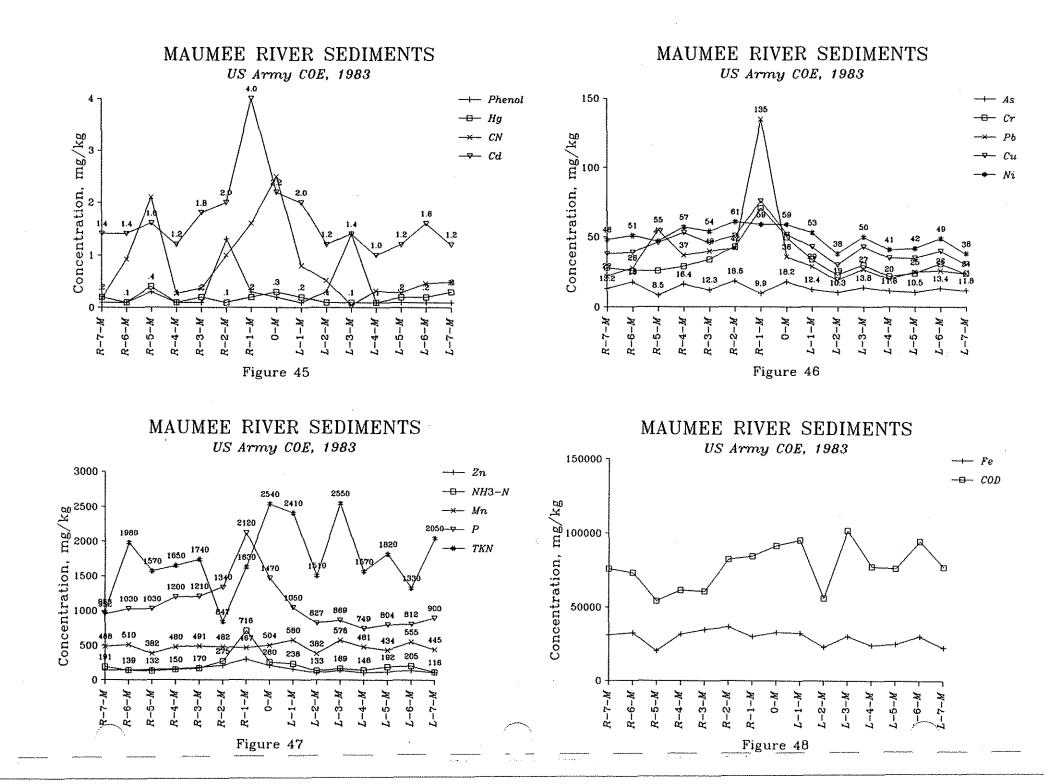
(mani)

U.S. Army Corps of Engineers 1983 Toledo Harbor Sediment Analyses

In 1983, Floyd Browne Associates and Aquatech, under contract from the U.S. Army Corps of Engineers, collected and analyzed sediments from Toledo Harbor. These data collected under this project are presented in Table 18.²² Included in this table are the severity rat-ings for various parameters when applying either the Ohio EPA guidelines or the US EPA guidelines. Figures 45-48 show how the parameters tested vary by river (or lake) mile. Figure 45 shows Phenol, Hg, CN, and Cd; Figure 46 shows As, Cr, Pb, Cu, and Ni; Figure 47 shows Zn, NH₃, Mn, P, and TKN; and Figure 48 shows Fe and COD.

					t	is army		LE 18 E ENGIN	FFRS. 1	983						
								R SEDIM	•							
PARAMETER	Abbrev.	R-7-M	R-6-M	R-5-M	R-4-M	R-3-M	R-2-M	R-1-M	0-M	L-1-M	L-2-M	<u>L-3-M</u>	L-4-M	L-5-M	L-6-M	<u>L-7-M</u>
	There are no sediment guidelines for the following parameters:															
Tot Solids, %	TS	44.7	43.1	53.3	47.4	38	39.9	52.8	39.5	36.7	53.5	34.7	51.7	47.7	32.3	38
Phenols	Phenol	.1	.1	.3	.1	.1	1.3	.3	.2	.1	.3	1.4	.1	.1	.1	.1
	US EPA has established sediment guidelines for the following parameters:															
Vol. Solids, %	TVS	6.14	5.22	5.61	5.94	6.55	6.99	5.8	5.48	6.69	4.21	5.1	4.31	4.43	6.19	4.85
Severity		C	C	ç	C	C	C	C	c	C	A	C	A	A	c	Ă
Mercury	Hg	-2	.1	.4	.1	.2	.1	.2	.3	.2	.1	.1	.1	.2	.2	.3
Severity	~.	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
Cyanide	CN	.18	.92	2.1	.27	.37	1	1.6	2.5	.8	.52	.05	.32	.28	.46	.49
Severity		C C	E	,E	E	E	E	E	E	E	E	A	E	E	E	E.
Nickel	Nî	48	51	47	57	54	61	59	59	53	38	50	41	42	49	38
Severity		C	E	C	E	E	E	E	E	E	C	E	C	C	C	C
Amonia-N	NH3-N	191	139	132	150	170	275	716	260	236	133	169	146	192	205	116
Severity		C	C	C	C	С	E	E	E	E	C	С	C	C	E	C
Manganese	Mn	488	510	382	480	491	482	467	504	580	382	576	481	434	555	445
Severity		С	Ε	С	C	С	C	С	E	E	C	E	С	C	E	C
Total P	Ρ	952	1030	1030	1200	1210	1340	2120	1470	1050	827	869	749	804	812	900
Severity		Ε	Ε	Ε	E	E	E	E	E	E	E	E	Ε	Ε	E	Ε
TKN	TKN	988	1980	1570	1650	1740	847	1630	2540	2410	1510	2550	1570	1820	1330	2050
Severity		A	С	C	С	C	A	С	E	E	С	E	С	C	С	E
000	œ	76000	73200	54400	61700	60900	82700	84700	91900	95600	56400	102000	77700	76600	95000	77600
Severity		C	С	C	C	C	Ε	E	E	E	C	E	C	C	E	С
	Ohio EP	A has e	stablis	hed sec	liment g	µidelir	es for	the fol	lowing	metals:	1					
Cadmium	Cd	1.4	1.4	1.6	1.2	1.8	2	4	2.2	2	1.2	1.4	1	1.2	1.6	1.2
Severity		D	D	D	D	D	E	E	E	E	D	D	Ċ	D	D	D
Arsenic	As	13.2	18	8.5	16.4	12.3	18.6	9.9	18.2	12.4	10.3	13.8	11.6	10.5	13.4	11.8
Severity		В	Ċ	A	В	A	C	A	C	A	A	B	A	A	B	A
Chraniun	Cr	28	26	26	29	34	43	71	50	34	23	30	22	24	31	24
Severity		Ē	Ē	Ē	Ē	Ē	Ē	É	Ĕ	Ē	D	Ē	D	E	E	E
Lead	Pb	22	28	55	37	40	42	135	36	29	19	27	20	ත්	26	24
Severity	. ~	- B	č	D	C C	č	C	Ē	Ď	D	Â	B	A	B	B	B
Copper	Cu	38	39	46	53	46	51	76	52	43	30	43	35	35	40	31
Severity	~	D D	D	O E	E	E	E	É	E	C- D	D		D		-+0 D	D .
Zinc	Zn	140	145	149	158	184	213	303	211	161	106	142	106	120	142	112
Severity		140 C	C+1	C	D	D	2.3 D	E		D	B	с С	B	120 C	гчс С	С С
Iron	Fe	31100	32600	-20300	31800	34900	37000	30200	33100	32600	23000	30500	24500	25300	30400	22900
Severity	10	B	B	A	51000 B	34900 B	5/000 C	30200 B	33100 B	32000 B	23000 A	50500 B	24500 A	2500 A	30400 B	22900 A
		0	D	<u>м</u>	G	D	Ŀ	D	D	D	×	đ	A	×	D	M
						Except	where r	oted, u	nits ar	e mg/kg	ļ.					

pt where noted, units are mg/kg.


Key to Severity Ratings:

Ohio EPA Guidelines

US EPA Guidelines

- Non-Elevated concentration A В Slightly Elevated concentration
- С Elevated concentration
- D Highly Elevated concentration
- E Extreme Elevated concentration

Non-Polluted Moderately Polluted Heavily Polluted

Facilities Plans

Facilities Plans are the first step in an application for Construction Grant funding from EPA. They include an assessment of the present situation in the study area, including water quality, and a forecast of future needs. Many Facilities Plans involved stream sampling to document water quality problems, especially septic tank discharges or other problems which new sewers or treatment plant improvements would alleviate.

Lucas County Facilities Plan

Finkbeiner, Pettis, and Strout performed water quality sampling on many streams in western Lucas County for the Lucas County Plan Update²³. On the smaller ditches, data collected for the Facilities Plan are still the only samples on record. The parameters tested, for the most part, were NH₃-N, BOD₅, DO, Fecal Coliform, and Fecal Strep. Data for each station includes the ratio of coliform to strep, which is used for a basis for determining whether bacterial contamination is due to animal wastes or human wastes. Many violations of water quality standards were noted, but will not be reiterated here. The data is available in Appendix G of the Facilities Plan. Since 1981, portions of the problem areas have been sewered, and it is probable that water quality violations in those areas have been eliminated.

Table 19 is an updated summary of this facilities plan data. The sampling points listed are:

- a. Points at which water quality violations were found in 1981, and
- b. Are still unsewered, or are immediately downstream from unsewered areas, and
- c. Indicated (in 1981) that contamination was due to human wastes.

	TABLE 19						
	LUCAS	COUNT	Y FAC	CILI7	TES	PLAN	•
WATER	QUALI	TY MO	NITOR	ING	FOR	1983	UPDATE

1Tenmile CrSylvania & MitchawNH3, FC2Tenmile CrSylvania & SilicaFC3 *Ottawa RiverSylvania W of CoreyFCBentbrook to be sewered5 *Tenmile CrCentennial & SilicaFC9 *Smith DtCentral & KingFC11Smith DtBancroft E of McCordFC12*Vanderpool DtBancroft & KingFC	(
2Tenmile CrSylvania & SilicaFC3 * Ottawa RiverSylvania W of CoreyFCBentbrook to be sewered5 * Tenmile CrCentennial & SilicaFC9 * Smith DtCentral & KingFC11Smith DtBancroft E of McCordFC	
3 * Ottawa RiverSylvania W of CoreyFCBentbrook to be sewered5 * Tenmile CrCentennial & SilicaFC9 * Smith DtCentral & KingFC11Smith DtBancroft E of McCordFCSubdiv upstrm sewered	
5 * Tenmile Cr Centennial & Silica FC 9 * Smith Dt Central & King FC 11 Smith Dt Bancroft E of McCord FC Subdiv upstrm sewered	
9 * Smith Dt Central & King FC 11 Smith Dt Bancroft E of McCord FC Subdiv upstrm sewered	
11 Smith Dt Bancroft E of McCord FC Subdiv upstrm sewered	
13* Heldman Dt Dorr & King FC	
16* Heldman Dt Nebraska & McCord NH ₃ , FC Immediate area sewered	
17* Heldman Dt McCord SE of Nebraska NH3, FC Immediate area sewered	
20* Haefner Dt Dorr & McCord FC	
24* Butler Dt Old St Line & Irwin FC	
28* Butler Dt Airport E of Crissey NH ₃ , FC	
29* Kujowski Dt Crissey S of Airport FC	
30 Cunningham Dt Crissey N of Garden FC	
31 Zaleski Dt Eber & Salisbury FC	
32 Wolf Cr Albon & Airport FC	
33 Wolf Cr Gunn & Airport FC	
34 Wolf Cr Off Airport W of Holloway	
38* Good Dt Angola @ I-475 NH ₃ , FC	
39* Butler Dt Old St Line W of Crissey FC	
45* Wiregrass Dt Soul Rd E of Wilkins FC	e
46* Wiregrass Dt Wilkins @ 20A FC	_(

*In designated area planned for sanitary sewer service in Areawide Water Quality Management Plan

Fish kills, cited by a 1979 ODNR report, are also mentioned in the *Lucas County Facilities Plan Update*. They occurred in 1976 on Wolf Creek, due to a chlorine solution, and in 1976 on Swan Creek due to a municipal sewage discharge.

Additional sampling was conducted in 1985 for a Facilities Plan update²⁴, which was written to apply for funding to construct sanitary sewers for the Dorcas Farms and South Hill Park subdivisions in Springfield Township, northeast of Holland. As yet, these sewers have not been built, so these samples, which are summarized in Table 20, may still be considered current.

TABLE 20LUCAS COUNTY FACILITIES PLAN:1985 MONITORING FOR DORCAS FARMS & SOUTH HILL PARK

SITE <u>NO</u>	1983 SITE NO	STREAM	APPROXIMATE LOCATION	SAMPLE NO	BOD5	D0	<u>_NH3</u>	FC
1	38	Good Dt	Angola W of I-475 Below S Hill Park	1 2	164.0 46.0	1.6* 2.9*	26.3* 13.9*	2,600,000* 550,000*
•			DETOW 3 HITT FAIL	3 AVG	24.0 78.0	1.8* 2.1*	7.4*	1,600,000* 1,583,333*
2	n/a	Good Dt	Above Wolf Creek	1 2	5.4 4.8	7.8 7.4	.4	380 120
				3 AVG	2.1 4.1	7.2 7.5	.4 .3	320 273
3	n/a	Wolf Cr	Below Good Ditch	1 2 3 AVG	1.4 2.0 1.6 1.7	8.4 8.4 8.0 8.3	.0 .0 .1 .1	1,200 630 630 820
4	n/a		Below Wolf Creek	1 2 3 AVG	1.1 1.8 1.4 1.4	8.6 7.4 8.0 8.0	.0 .0 .1 .0	680 560 460 567

*A water quality violation based on 2000 fecal coliform/100 ml, 0.5 ppm NH₃, and 5.0 ppm DO. There is no water quality standard for BOD_5 , but in clean water, it should be close to 0.

Good Ditch flows through the subdivisions, and sampling site #1 is immediately downstream. Houses in the development presently use septic systems, and failures of these systems are widespread and well-documented. The sampling data clearly show pollution from untreated sewage.

Toledo Facilities Plan

The Toledo Facilities Plan was written in a number of volumes. It included separate volumes for different phases of sewerage system improvements, and there was a Combined Sewer Overflow Study (CSO) written in 1978²⁵, and updated in 1987.

The 1978 study included the following water quality monitoring:

1. Rainfall quantity vs. overflow quantity from various combined sewage regulators.

2. Sediments were collected at five sites along Swan Creek from the mouth to Byrne Road; and at six sites on the Maumee ranging from river mile 0 to river mile 8. Samples were analyzed for BOD₅, COD₅, P, TKN, Organic Nitrogen, NH₃, NO₂, NO₃, Oil & Grease, Fe, and Zn.

The *Tenmile Creek Facilities Plan*²⁶ included similar sediment sampling at four sites on Tenmile Creek, ranging from mile point 6.2 to mile point 15.0. Parameters tested were BOD₅, COD₅, P, TKN, Organic Nitrogen, NH₃, NO₂, NO₃, Oil & Grease, Fe, and Zn.

Oregon Facilities Plan

Seven ditches and creeks were sampled for the 1974 Oregon Facilities Plan,²⁷ Drainage areas sampled were Amlosch/Driftmeyer Ditches, Heckman Ditch, Big Ditch, Tobias Ditch, and Wolf Creek. Fifteen samples were taken between 12/3/73 and 6/26/74. Parameters recorded were Cond., DO, BOD₅, P, Total Coliform, Fecal Coliform, Fecal Strep., Turb., Cl, NH₃, NO₂, and NO₃.

Additional sampling was done for the Harbor View Area update of the Oregon Facilities Plan.²⁸ Samples were collected at five sites, catch basins or ditches, and analyzed for DO, BOD₅, SS, P, fecal coliform, and fecal strep. One site had a DO of 4.4 ppm, and another had 5.1 ppm; the other three were under 1.5 ppm. Fecal coliform counts ranged from 25,000 to 1.1 million. BOD₅ ranged from 1.0 ppm to 148 ppm. These parameters indicated the presence of sewage.

Ohio EPA collected grab samples from seven ditches or storm sewers in July, 1981 following thunder storms. The only parameter analyzed was fecal coliform. Two sites had counts under 100. One was 360 bacteria/100 ml; and the other four ranged from 1000 to 360,000. These samples also indicate sewage.

Luckey Facilities Plan

One grab sample was taken at each of 27 sites in local streams and ditches. Parameters analyzed were BOD₅, fecal coliform, and DO. These samples showed the presence of sewage in the streams. The Village of Luckey presently has a combined sewerage system. The system collects dry-weather sewage flows and treats the wastewater in a lagoon WWTP, which is operated by the Village. This system was placed in operation in late 1987.

Maumee Combined Sewer Overflow Study

Maumee's combined sewer overflows were studied in detail in this report. This study is discussed in more depth in the section under CSOs.

The TMACOG 208 Program

When the Clean Water Act (PL 92-500) was originally enacted in 1972, funding was included to perform intensive water quality assessment and planning. Water quality parameters analyzed included SS, C, N, P, CODs and BODs of various durations and fecal coliform. One site in the Maumee Basin was monitored in 1974, and eight sites in 1975-76.

Maumee Bay Environmental Quality Studies

In 1974 and again in 1977, detailed investigations of the environmental conditions of the Maumee Bay were conducted by a team of researchers directed by Dr. Peter Fraleigh of the University of Toledo. These studies represented an examination of Maumee Bay before and after the construction of the Confined Disposal Facility (Facility #3) in Maumee Bay at the mouth of the River. The studies examined water quality, water mixing patterns, sedimentation and erosion patterns, and the biological characteristics of the Bay. Major reports of the studies are:

The Maumee Bay Environmental Quality Study 1974-Final Report, Toledo Lucas Port Authority, September 1975.

The Maumee Bay Environmental Quality Study 1977-Final Report, Toledo Lucas County Port Authority, January 1979.

WATER QUALITY DATA ANALYSIS

BOD, bacteria counts, nitrogen compounds (NO₃, NO₂, NH₃, TKN), and phosphorus compounds are "conventional pollutants," and are commonly used to test for sewage. Nitrogen and phosphorus parameters are also commonly measured to determine the effects of agricultural runoff on a stream. Most of the water quality collected in the Maumee basin consists of tests for these "conventional" pollutants.

The USGS station at Waterville provides a long history of water quality data for the Maumee as it comes into the Toledo area. TESD data provides a similar history for water quality in the Toledo area. The BWQR monitoring covered many of the same parameters, but also took at detailed look at the streams' biology, and sampled sediments.

TOLEDO ENVIRONMENTAL SERVICES DATA

Discussion of TESD Data

TESD sampling includes the "conventional" pollutants: solids, phosphorus, BOD₅, nitrogen compounds, bacteria counts, conductivity, chloride, and pH. The sampling program is geared toward detecting pollution from untreated sewage. The reason for this is to record the effects of CSOs, which have long been known as a major source of pollution in Toledo streams.

Swan Creek

Bacteria Counts

The average July bacteria counts were less than the year-round averages for Swan Creek. The creek reaches its worst around MP 2.6 (Hawley St). At this point the annual average total coliform was over 1.5 million, and the July average was around 500,000. Fecal coliform counts were also high (50,000 annual average and 34,000 July average). Bacteria counts decreased below MP 2.6.

Pollution Counts

Annual average DO ranged from 9.7 ppm at MP 10.6 (Eastgate Rd), down to 7 ppm at MP 0.6 (St. Clair St). July averages showed the lowest reading at MP 2.6, of 4.4 ppm. DO increased to 5.0 ppm at MP 0.6.

NH₃ showed a marked increased at MP 2.6 for July averages. Annual average NH₃ also showed a steady increase heading downstream.

Average phosphorus concentrations were in the range of 0.4 to 0.5 ppm, and did not seem to change much from station to station. For July averages, phosphorus peaked at 0.7 ppm at MP 2.6.

Year-to-Year Comparisons

Upstream at Eastgate Road, BOD₅ was nearly constant from 1981-4, and showed increases in 1985 and 1986. Downstream at Hawley St, it decreased in 1982 and 1983. At Eastgate, DO decreased each year from 1981-5, and showed a marked improvement in 1986, but at Hawley, the pattern was the same.

At Eastgate, NH_3 showed a constant increase from 1981-5, and dropped in 1986. At Hawley, there were small increases in 1982 and 1983, and a large one in 1984. NH_3 decreased in 1985 and 1986 overall. Phosphorus was fairly constant at both stations.

Bacteria counts showed big peaks at Eastgate in 1982 and 1983, and a smaller peak in 1985. At Hawley, there was a large peak in 1985, but counts were relatively constant the other years.

Tenmile Creek/Ottawa River

Bacteria Counts

Bacteria counts peaked at MPs 6 (Lagrange St) and 4.7 (Stickney Ave). July averages for total coliform at these points were close to 400,000. Annual average peaked at MP 6 with a count of around 150,000. Fecal coliform showed less of a sharp peak; July averages at four consecutive stations (MP 8.9, 7, 6, and 4.7) were over 30,000.

Pollution Counts

Annual average DO ranged from 9.1 ppm at MP 10.9 (UT Bridge), dropped to 7.2 at MP 6, and increased back to 9.2 at MP 1.6 (Summit St). The lowest DO readings were found at MP 7. Below MP 3.1 (Suder Ave), DO was over 8 ppm. BOD₅ averaged 3-4 ppm above MP 7 (Berdan Ave), where it increased sharply. All averages below MP 7 were over 5 ppm.

NH₃ ranged from 0.2 ppm at MP 14.1 (Sylvania Ave) to 1.9 ppm at MP 1.6. Phosphorus remained steady at 0.2 to 0.3 ppm at all stations. The patterns for July averages were similar.

Year-to-Year Comparisons

Upstream at Sylvania Ave, BOD₅ increased in 1982-3, dropped in 1984-5, and rose again in 1986. Downstream at Lagrange Street, there was a big peak in 1982, and steady decreases in 1983-6. At Sylvania, DO showed fluctuations from year to year, but appear to be slowly decreasing over the six-year period. Lagrange showed the same pattern in DO.

NH₃ showed a general increase at Sylvania, with a slight decrease in 1986. This pattern was repeated at Lagrange. Phosphorus remained constant at both stations.

Bacteria counts showed increases in 1982 and 1983, improvement the next two years, and a big peak in 1986 at Sylvania. At Lagrange, there was a big peak in 1982, then improved, but still had a high count the next year; more decreases in 1984-5, and a peak back to 1983 levels in 1986.

Maumee River

Note: Sampling at MP 1.2 (NE corner WWTP) was discontinued after 1983. No samples were taken at this site in July or August 1981-3. June, 1982 data is used in Figures 23 and 25.

Bacteria Counts

The Maumee River also showed a sharp peak in bacterial counts. The peak stations were MP 1.2 with an annual average count of 115,000 total coliform, and 10,000 fecal coliform.

Pollution Counts

For annual averages, BOD_5 and NH_3 both peaked at MP 1.2 (8.4 ppm and 3.0 ppm, respectively). One station upstream at MP 1.7 (Toledo Terminal bridge), both parameters were notably higher than further upstream. Below MP 1.2, both parameters dropped sharply.

DO reached its lowest level (6.6 ppm) at MP 1.7, and increased to 8.2 ppm at MP 1.2. Further downstream, average DO was over 7 ppm.

Year-to-Year Comparisons

Upstream at Waterville, BOD₅ appears to show a general increase without big peaks. In 1986 levels were lower than 1985, however. Near the mouth (Toledo Terminal bridge), BOD₅ shows a declining trend instead, with an especially large drop in '84. There was an increase in 1986. DO at Waterville appears to show a slight general increase, although with a peak average DO of 10 ppm in 1984. The trend appears reversed near the mouth, with drops in DO from 1982-1985, and improvement in 1986.

At Waterville, NH₃ was low in 1981-2, and showed a marked increase in 1983, which was maintained in 1984-6. Near the mouth, NH₃ showed a general decline, with a big drop in 1982. Concentrations were lower than upstream.

At Waterville, P was steady throughout the period. At the mouth, P remained fairly steady through the period, although with a peak in 1986.

Bacterial counts at Waterville showed large variations with no noticeable trend. Generally all three bacterial parameters (total coliform, fecal coliform, and fecal strep) follow the same pattern, with total coliform showing the highest numbers and greatest fluctuations. In 1986, however, total coliform and fecal strep decrease at Waterville, while fecal coliform showed a sharp increase. Near the mouth, there appears to be a very clear trend. Bacterial counts showed a sharp decrease in 1982, and continued dropping in 1983-5. In 1986 there was a slight increase again.

Tributaries

Bacteria Counts

The annual average fecal coliform counts for all sampling stations exceeded 1000, the average standard for warmwater habitat primary contact streams. Otter Creek, Delaware Creek, and Grassy had average fecal coliform counts under 2000 for July (the maximum standard), which the other stations exceeded that limit as well. Hill Ditch had an average July fecal coliform count of 15,000; Silver Creek had 37,000; Shantee Creek had 37,000; and Heilman Ditch had 21,000.

Pollution Counts

Otter Creek and Grassy Creek both showed high BOD₅ levels, and lower DO than the other creeks. Grassy Creek had an average BOD₅ of 14.5, and a July average of 17. DO averaged about 7 ppm, and 4.9 ppm in July. Grassy Creek BOD₅ averaged 7.4 ppm, and was 13.1 ppm in July. DO averaged 7.5 ppm, and was 5.8 ppm in July. The other creeks had 5 to 6 ppm BOD₅, without a significant July peak.

NH₃ was in the 0.7 to 0.8 ppm range for all creeks except Otter and Heilman, which averaged close to 5 ppm. None of the creeks showed a July peak; Otter Creek's July NH₃ level dropped to 2.1 ppm. All creeks had P concentrations in the 0.2 to 0.3 ppm range, except Otter (0.6 ppm) and Heilman (1.1 ppm). Heilman was the only creek to show a July peak for phosphorus, which was 1.7 ppm. By comparison, a major sewage treatment plant's effluent is required to contain less than 1.0 ppm P.

Trends from TESD Data

Table 21 compares the year-to-year increases and decreases in the average BOD₅, DO, NH₃, P, and fecal coliform values at the upstream and downstream stations.

TABLE 21 TESD DATA: WATER QUALITY TRENDS

	1982	1983	1984	1985	1986
SWAN CREEK		•			
Eastgate BOD ₅	-	+	+	+	+
Hawley BOD _F		_	+	+	-
Eastgate DO			-	-	+
Hawley DO	· · · •	· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	+
Eastgate NH ₃	+	+	+	+	
Hawley NH ₃	-	X	_+		-
<u>Hawley NH3</u> Eastgate P	+	+	-	-	+
Hawley P	+		+	+	<u> </u>
Eastgate Fecal coliform	+	-	_		+
Hawley Fecal coliform	÷	**	**	+	
OTTAWA RIVER					
Sylvania Ave BOD ₅	-	+	-	-	+
<u>Lagrange BOD5</u> Sylvania Ave DO	+	-	_		-
Sylvania AveĭDO	-	+	-	- '	+
Lagrange DO	-	· •••	-	+	***
Sylvania Ave NH3	+	+	÷	+	-
Lagrange NH3	+		+	+	-
<u>Lagrange NH₃</u> Sylvania Ave P	-	-	+		х
Lagrange P	+	÷	X	-	<u> </u>
Sylvania Ave Fecal coliform	+	+	-	+	+
Lagrange Fecal coliform	+	**	***	-	+
MAUMEE RIVER					
Waterville BOD ₅	+	+	-	+	-
<u>TT* Bridge BOD5</u>	+				+
<u>TT* Bridge BOD5</u> Waterville DO	· +		+	-	· -
TT Bridge DO	· · •	*			+
Waterville NH ₃	+	+	· X	+	Х
<u>TT Bridge NH3</u>		+	···.		~
<u>TT Bridge NH3</u> Waterville P	Х	+	X	+	X
TT Bridge P	-		X	х	+
Waterville Fecal coliform	+	-		+	-
TT Bridge Fecal coliform	-		-	- '	+

KEY:

This parameter showed *improvement* from the previous year This parameter showed *lower water quality* than the previous year This parameter showed *little or no change* from the previous year + х

*

TT = Toledo Terminal rail bridge over the Maumee River

DISCUSSION OF LOWER MAUMEE BWQR DATA

The Maumee Basin BWQR gives substantially the same picture of water quality in area streams as the TESD data. In general, the three major streams (Maumee River, Ottawa River, and Swan Creek) have their best water quality upstream of the RAP Area, continually decline until just above the mouth of the stream, and then show some improvement. The point where each of these streams is most severely degraded, according to BWQR data, corresponds closely to the "worst point" shown by TESD data. This is not absolutely true for every parameter sampled, but overall, the generalization holds. For additional detail, refer to Figures 35-43, which graph the BWQR data for each of the three major streams; and Appendix A, which gives the BWQR data.

BWOR Sediment Samples

There are no specific standards for pollutant concentrations in stream sediments. US EPA, Ohio EPA and the Ontario MOE offer guidelines for metals, nutrients, and PCBs, but none for the volatile organics found in the BWQR samples of November, 1986.

Table 22 displays the results of Ohio EPA's analyses of the 1986 sediment sampling at eleven locations for seven heavy metals, when applying the US EPA Sediment Quality Guidelines. Only cadmium is classed as "non-polluting" at all locations. None of these metals are considered a pollution factor upstream at the Grand Rapids Dam. As shown, the other three locations on the Maumee River are classed "heavily polluted" for arsenic, with the Cherry Street Bridge location classed as "heavily polluted" for both lead and copper, with the Toledo WWTP location classed as "heavily polluted" for zinc. Chromium, copper, lead, nickel and zinc are classed as "moderately polluted" at the remainder locations.

For Swan Creek at the Collingwood Blvd. location, lead, zinc and arsenic are classed as "heavily polluted", chromium and nickel as "moderately polluted", and copper as "non-polluting".

For the Ottawa River, classed as "heavily polluted" are copper, lead, nickel and zinc for the Lagrange Street location, with the Stickney Avenue location similarly classed for copper and lead. Chromium is classed an "non-polluting" for the Stickney Avenue location, with the remaining metals for these two locations on the Ottawa River being classed as "moder-ately polluted".

For Otter Creek, the Wheeling Street location is classed as "heavily polluted" for chromium, lead and arsenic, with the Oakdale Avenue location similarly classed for arsenic, and Millard Avenue for copper. Copper is classed as "non-polluting" for the Oakdale Avenue location, with the remaining metals for these three locations on Otter Creek being classed as "moderately polluted".

Duck Creek at York Street is classed as "heavily polluted" for arsenic, with zinc and lead as "moderately polluted", and the remaining three metals as "non-polluting".

TABLE 22 RATING OF HEAVY METALS IN SEDIMENT BY STREAM LOCATION (by US EPA Classification)

STREAM	LOCATION	RM	Cd	Cr	Cu	Pb	Ni	Zn	As
Maumee Maumee Maumee Maumee	Grand Rapids Dam Eagle Point Cherry Street Toledo WWTP	32.6 9.4 4.9 1.0	NP NP NP NP	NP MP MP MP	NP MP HP MP	NP MP HP MP	NP MP MP MP	NP MP MP HP	HP HP HP
Swan Creek	Collingwood Blvd.	1.2	NP	MP	NP	HP	MP	HP	HP
	Lagrange Street Stickney Avenue	6.4 4.9	NP NP	MP NP	HP HP	HP HP	HP MP	HP MP	MP MP
Otter Creek Otter Creek Otter Creek	Oakdale Avenue Wheeling Street Millard Avenue	5.9 4.0 2.1	NP NP NP	MP HP MP	NP MP HP	MP HP MP	MP MP MP	MP MP MP	HP HP MP
Duck Creek	York Street	2.1	NP	NP	NP	MP	NP	MP	HP

Key

HΡ

MP NP Heavily Polluted Moderately Polluted Non-polluted

Source: Table C-5, Biological and Water Quality Report, Ohio EPA

BWOR Fish Indices

As a part of the Biological and Water Quality Report conducted by Ohio EPA in the summer of 1986, investigators based on electrofishing collections, compared fish species documented in the Maumee River study area as reported in Trautman (1981).²⁹ Trautman reported 87 different species in 1981, with Ohio EPA reporting 50, finding four new species, with 41 missing species. The four new species were: smallmouth buffalo, ghost shiner, mosquitofish, and white perch.

The investigative team reported for Swan Creek 39 species compared to Trautman's 75, with three new species, totaling 36 missing species. For the Ottawa River, Trautman had reported 79 species in 1981, with the investigative team reporting 44 species, five new species, totaling 38 missing species. For Duck and Otter Creeks, Trautman reported 62 species, with the investigative team reporting 25, one new species, totaling 38 missing species.

This investigative team reported the percentage of fish with external anomalies for Swan Creek. The investigation began at Eastgate Road (RM 10.2) where faunal conditions were the best, going downstream to St. Clair Street (RM 0.5). Eastgate Road is upstream from all listed permitted dischargers with results being 9.3% light blackspot, 0.6% light anchor worm, and 0.9% lesions. The Detroit Avenue station (RM 4.9), the point of the upstream lake effect on Swan Creek, results were: 3.1% light blackspot, 1.5% heavy blackspot, and 3.1% deformities. Above the Roller Dam (RM 4.4) results were: 7% light blackspot, 0.6% deformities, 1.4% eroded fins, and 0.8% lesions. At Champion Street (RM 3.9), where the combined sewers begin, results were: 0.7% light blackspot, 0.7% heavy blackspot, 1.7% light anchor worm, 0.7% deformities, 1.7% eroded fins, 2.9% lesions, and 0.7% other. At

1.

Hawley Street (RM 2.6), still in the combined sewer area, the results were: 1.5% light anchor worm, 1.5% eroded fins and 1.5% lesions.

The investigative team reported that fish community conditions were poor in all of these areas of Swan Creek with RMs 2.6 and 1.2 being very poor. Collingwood Blvd. (RM 1.2) the results were: 6.2% lesions and 1.8% external parasites. At St. Clair Street (RM 0.5), near the mouth where the Maumee River dilutes Swan Creek, the results were: 0.4% light anchor worm, 1.2% lesions, and 0.8% other.

The mean fish community indices based on electrofishing samples for both Duck Creek and Otter Creek as conducted by the investigative team indicated Class V or very poor, except for the near the mouth of Duck Creek which was poor, or Class IV.

The investigative team in its fish report for the Maumee River started upstream at RM 45.7 (downstream of Napoleon WWTP and Campbell Soup Co.), where fish community values were high (IWB=9.0, IWB2=8.7), though the team states that the community composition and quality were not that exceptional. At RMs 38.5 and 33, upstream of the Grand Rapids dam (RM 32.2), community values displayed a significant drop (IWB=6.9 and 6.7, IWB2=6.5 and 6.5 respectively).

The next four sites were located amongst the rapids, RMs 31.5, 26.7, 19.8 and 17.2, the community values were amongst the highest these (IWB=9.2, 8.8, 9.0 and 8.6, IWB2=9.0, 8.6 and 8.1 respectively). At RM 13.7, below the Perrysburg WWTP (RM 14.5) and at the point of the beginning of the lake effect, the community values dropped nearly a full point (IWB=7.5, IWB2=7.1). It is reported that the community values remained near this level at RMs 9.4, 7.4, 7.3 and 4.7. However, species composition did change at RM 4.7 downstream of Swan Creek. The IWB ranged from 7.8 to 7.1 while IWB2 ranged from 7.5 to 6.4.

The next five downstream stations (RMs 3.6, 3.3, 1.5 and 0.6), an area where strong seiche activities move pollution plumes both up and downstream, the IWB ranged from 7.2 and 6.4 and IWB2's ranged from 6.5 and 5.5, approximately a full point below those sites just upstream. It was thought that the upstream movement of the Toledo WWTP plume and the numerous combined sewer overflow discharges are the cause of the low community values.

The report states that the Toledo WWTP also effects the Maumee Bay wherein the Maumee Bay area (0.1 Toledo Edison intake channel and 0.0 southeast of Grassy Island disposal area) displayed the lowest community values, while site 0.4 in the Bay, farthest from the WWTP showed the best community values in the bay area.

Fish Tissue Sampling

Biological monitoring is a valuable tool for determining water quality because it provides a direct measure of the effects of pollutants on aquatic life. Fish tissue sampling answers the question of what pollutants, and how much, are being taken into the food chain. Fish which contain unacceptable levels of PCBs, heavy metals, or other toxics, cannot be used for human consumption. Even if people do not eat the contaminated fish, however, the toxics will stay in the food chain, and may ultimately find their way to the dinner table. Table 23 gives details of fish tissue sampling done in the Lower Maumee from 1976 to date.³⁰

TABLE 23 PCB CONTENT OF FISH TISSUE, LOWER MAUMEE RIVER

YEAR	SAMPLE NUMBER	SPECIES	SAMPLE TYPE	RM	LOCATION	TOTAL PCBs (ppm)
1	NORICEN			<u> </u>	LOOMITON	
1985	85	Rock bass	W.B.C.	20.6	Waterville	0.5
1985	87	Carp	W.B.C.	20.6	Waterville	1.0
1985			W.B.C.	20.6	Waterville	0.2
1978		Carp	W.B.C.	20.6	Waterville	0.3
1986	61	Green sunfish	W.B.C.	4.7	Maumee ?	3.9
1986	56	Yellow perch	W.B.C.	0.7	Cullen Park	4.0
1986	57	Carp	W.B.C.	0.7	Cullen Park	6.8
1985	83	Carp	W.B.C.	0.7	Cullen Park	3.0
1985	84	Bluegill	W.B.C.	0.7	Cullen Park	1.0
1978		Carp	W.B.C.	0.7	Cullen Park	4.8
1986	58	White perch	W.B.C.	0.0	Maumee Mouth	7.0
1986	59	Channel catfish	F.	0.0	Maumee Mouth	3.8
1986	60	Carp	W.B.C.	0.0	Maumee Mouth	5.5
1982		Carp	W.B.C.	0.0	Maumee Mouth	11.5
1979		Spottail shiner	W.B.C.	0.0	Maumee Mouth	3.3
1979(b)	Spottail shiner	W.B.C.	0.0	Maumee Mouth	2.9
1979		Northern pike	W.B.	0.0	Maumee Mouth	4.9
1979(b)	Northern pike	W.B.	0.0	Maumee Mouth	4.9
1979		Carp	W.B.C.	0.0	Maumee Mouth	5.9
1979		Yellow perch	W.B.C.	0.0	Maumee Mouth	2.1
1976		Carp/Catfish	W.B.C.	0.0?	Maumee Mouth?	5.4
			SWAN CREE	К		
1986	62	Carp	W.B.C.	0.5	Swan Creek	5.9
			TENMILE CRE	EK		
1986	73	Carp	W.B.C.	4.1	Tenmile Creek	6.8
			OTTAWA RIV	ER		
1986	74	Largemouth Bass	W.B.C.	1.6	Ottawa River	12.0
1986	76	Carp	W.B.C.	1.6	Ottawa River	25.4
1986	75	Carp	W.B.C.	Dst	Stickney Ave	15.1

a. Data rounded to the nearest tenth; W.B.C. = whole body composite sample;
F = fillet sample; RM = river mile.
b. Sample analyzed twice.

US ARMY CORPS OF ENGINEERS SEDIMENT DATA

Ohio EPA has established guidelines for sediment quality for seven metals, but there are no guidelines for COD, Volatile Solids, TKN, NO₃, Oil & Grease, CN, Ni, Mn, Ba, Hg, or PCBs in sediments. US EPA has one set of guidelines for these parameters,³¹ the Ontario Ministry of the Environment (MOE) has another set,³² and the IJC has yet another.³³ Wisconsin also has a set of guidelines. There are significant differences between these sets of guidelines. Whether or not sediments are "polluted," or how polluted they are can depend on which set of guidelines is being used.

The US EPA and Ontario MOE guidelines for sediment quality parameters³¹ not covered by Ohio EPA guidelines are presented in Table 24.

TABLE 24 US EPA AND ONTARIO MOE GUIDELINES FOR SEDIMENT QUALITY FOR GREAT LAKES HARBORS

	<u>US EPA CLAS</u>	SIFICATION	MOE LIMIT	
	Non-	Moderately	Heavily	
	<u>Polluted</u>	<u>Polluted</u>	<u>Polluted</u>	
	_			_
Volatile Solids (%)	< 5	5 - 8	> 8	6
COD	< 40,000	40,000-80,000	> 80,000	50,000
TKN	< 1000	1000-2000	> 2000	2000
Oil & Grease	< 1000	1000-2000	> 2000	1500
(Hexane Solubles)				
NH3 see a second second	< 75	75 - 200	> 200	100
CN	< 0.1	0.1 - 0.25	> 0.25	0.1
P and a second	< 420	420 - 650	> 650	
Niasa	< 20	20 - 50	> 50	25
Mn	< 300	300 - 500	> 500	Marke Marke Freds
Ba	< 20	20 - 60	> 60	
Hg			> 1	0.3
Total PCB			> 10	0.05
			<u> </u>	~ ~ ~ ~

All units are mg/kg dry weight unless otherwise indicated.

US Army Corps of Engineers shipping channel sediment data collected in 1983 show a serious heavy metal contamination problem. The metals of particular concern are Cd, Cr, Pb, Cu, Mn and Ni. In nearly all cases, the concentrations of these parameters are highest at and slightly above the mouth of the Maumee, between RM-2 and LM-1. Most parameters show some improvement past the mouth, in the Bay (LM-2 and beyond).

Table 27 displays the concentration levels of metals as found in the 1983 shipping channel sediments when applying the Ohio EPA sediment guidelines and the concentration levels of the remainder parameters for these same sediments when applying the US EPA sediment guidelines.

TABLE 25 CONCENTRATION LEVELS OF METALS AND CHEMICALS IN 1983 SHIPPING CHANNEL SEDIMENTS

Arsenic (As) Cadmium (Cd) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb)Zinc (Zn)Cyanide (CN) Chemical Oxygen Demand (COD) Mercury (Hg) Manganese (Mn) Nickel (Ni) Nitrate (NO₃) Phosphorus (P) Total Kjeldahl Nitrogen (TKN) Volatile Solids (VS)

Non-elevated to Elevated Highly to Extreme Elevated Extreme Elevated Highly to Extreme Elevated Non-elevated to Slightly Elevated Non-elevated to Elevated Elevated to Highly Elevated Heavily Polluted Polluted to Heavily Polluted Non-Polluted Polluted to Heavily Polluted Polluted to Heavily Polluted Polluted to Heavily Polluted Heavily Polluted Polluted to Heavily Polluted Moderately Polluted

SUMMARY OF TOXIC POLLUTANTS

This section is concerned with those chemicals which are known to biomagnify, bioaccumulate, or are suspected of causing cancer as well as those which are acutely toxic to aquatic organisms. Categories of toxic pollutants of concern, in the AOC, include polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalates, and metals. Other categories of toxics which have not been studied in the Toledo Area include the dioxins and furans. Studies of Toledo Harbor sediments have not shown sediment bound pesticides at levels high enough to arouse concern, at least in the data available for review.

The Great Lakes International Surveillance Plan, 1986, states that, "The chemical contaminants issue, especially persistent toxic substances, is the major focus of the 1978 Great Lakes Water Quality Agreement and the monitoring and surveillance plans. The effects of toxic substances on the health of the Great Lakes ecosystem, including man, are not well understood. However, some obvious problems including closed fisheries, fish morphological abnormalities, fish kills, and impairment of reproduction and deformities in aquatic birds have been well documented. Present levels of certain substances are adversely affecting growth and reproduction in some Great Lakes biota, and contaminant levels in many top predator fish still exceed the guidelines for human consumption set by public health agencies in Canada and the United States." ¹ To understand where and how these substances interact, both biotic and abiotic components of the system must be scrutinized. It is important to know the quantities and distribution of chemical contaminants and to identify the sources and fates of contaminants.

The 1986 Plan goes on to say that, "The Lake Erie Basin is the most seriously impacted of all the Great Lakes, having a total of eight Areas of Concern (including both Connecting Channels)." There is a lack of thorough quantitative pollution data bases for any of these areas (except Raisin River). "It has been documented that the most conspicuous problem found in the Areas of Concern centers around sediment contamination." ¹ The current knowledge and understanding of geochemical and biological processes, and their contaminated sediment problems, are limited.

Further, the 1986 Plan states that, "The Maumee River contributes over 50% of the total non-point tributary loading to Lake Erie (excluding the Detroit River). It is the most important source of agricultural nutrients and suspended sediment to the lake and particularly to the Western Basin. Records of metal and organic contaminants, as well as nutrients preserved in the sediments, measure the change in status of the lake since before the beginning of man's influence. However, due to the widespread occurrence and activity of benthic organisms in recent lake sediments and generally low sedimentation rates, annual contributions of material are mixed with older sediments so that on the average two decades of input are smeared together (Robbins, 1983). As a result of this mixing, changes in the state of the Great Lakes can be detected in the sedimentary records only on multidecade time scales. However, in certain areas of Lake Erie sedimentation rates are so high that the time resolution may be as low as 3 to 5 years. This means that the changes in the status of Lake Erie may be more closely monitored using these areas having high sedimentation rates." 1

Nriagu and Simmons in their 1984 study found that the Total Suspended Matter (TSM) in Lake Erie (4-8 mg/l) is greater than any of the other Great Lakes. In the upper lakes 90% of the PAH is in the dissolved phase, but in nearshore areas of Western Lake Erie a substantial fraction of the PAH is associated with particles. Resuspension of sediments from the western basin of Lake Erie is extensive but release rates of sediment contaminants are unknown. 34

Lake Erie inputs are less than the other Great Lakes except Ontario. The atmosphere is the largest source of PAH to the Great Lakes. Atmospheric inputs of benzo(a)pyrene (BaP) to Toledo area waters had been declining steadily until 1979, the last year for which there was available data. ³⁴

Table 26 displays Nriagu and Simmons findings for 1982 PAH levels in Lake Erie.

	Sediment ng/g(ppb)	Atmospheric input (metric tons per year)
phenanthrene	345+92	1.5
anthracene	$\overline{?}$	1.5
fluoranthene	569 <u>+</u> 442	?
pyrene	391 <u>+</u> 91	2.6
BaP	255 <u>+</u> 52	2.5
Ba Anthracene	?	1.5
Perylene	?	1.5
Source: Nriagu and	Simmons, 1984, p. 200-201	

TABLE 261982 PAH LEVELS IN LAKE ERIE

Frank, et al, 1977, found that in Lake Erie, the Western Basin sediments had the highest concentration of PCB (660 ng/g [ppb]). This amount is twice the level of PCB in sediments of the Central Basin and Eastern Basin of Lake Erie.³⁵ Nriagu and Simmons found that PCB concentrations are highest in areas of recent sedimentation and lowest in areas of scour where faster water currents prevent sediment accumulation. For Lake Erie waters an average PCB concentration of 27 ng/l has been reported. From 1968 - 1976 the average PCB concentration in Lake Erie fish was 0.88 μ g/g (ppm) with a range from 0.1 to 9.3 μ g/g. ³⁴

The 1986 Plan states that, "Heavy metal contamination problems associated with Lake Erie have been recognized for many years. For example, mercury concentration of Lakes Erie and St. Clair from 1950 - 1970 led to a ban of commercial fishing in both systems during the early 1970's. Nriagu, *et al.*, 1979 estimated loading of Cu, Pb and Zn into Lake Erie from

various sources and found over 1×10^6 kg/yr of Cu and Pb and over 3×10^6 kg/yr of Zn to be retained in the lake annually. A significant portion of the load was attributed to sources originating from the Detroit River Connecting Channel System. In addition, metal contamination problems have been identified at numerous smaller tributaries entering Lake Erie's southern shore. Metal and organic contamination has led to the classification of six tributaries as Areas of Concern. As a result, the dispersion of metals into the open lake remains a concern and needs to be addressed."

Lead concentrations in sediment tend to be highest in depositional zones and least in shallow nearshore zones. One exception is the "plume" of high sediment lead concentration emanating from Toledo. Levels of lead in Lake Erie waters range from 0.46 to $3.5 \mu g/l$. Concentrations in sediments average 154 ± 43 mg/kg.³⁴

Carbon uptake in plants is a measure of growth or photosynthesis. Munawar and Thomas, 1984, found that standard elutriates of Toledo Harbor sediments caused significant inhibition of C^{14} uptake by ultraplankton (5-20 μ m) in algal fractionation bioassays (AFB). Such phytoplankton are abundant, have very short generation times, and are fragile and sensitive to environmental perturbations. They are also primary producers - the food source upon which the rest of the aquatic food web is ultimately dependent.³⁰

All Toledo standard elutriates caused significant inhibition of the ultra-plankton C^{14} uptake compared to the control (a reduction of 29% to 35% at a 20% elutriate concentration. (A standard elutriate was prepared by mixing one part sediment (v) with 4 parts (v) of filtered (.45 μ m) lake water. This was then agitated 30 minutes by air, settled for one hour, and filtered (.45 μ m). The liquid filtrate was then used in the AFB tests.) ³⁰

Mac and Willford, 1986, found that Toledo Harbor sediments (see Table 27) contained 0.210 μ g/g (ppm) PCBs, most of which resembled Aroclor 1248. In a bioassay, there was no death of fathead minnows exposed to Toledo Harbor sediments and in a similar test of earthworms 36% died, although these were all in one tank in which an increase in temperature and a decrease in oxygen concentration occurred.

	TABLE 27	
PHYSICAL AND CHEMICAL	CHARACTERISTICS OF	TEST SEDIMENTS

	Physical Composition (% dry wt)				Contaminants (µg/g dry wt)		
Sediment	Sand	Silt	Clay	Volatile Solids	Oil & Grease	PCBs	Ha
Toledo Harbor	23.8	35.5	40.7	13.1	3700	0.210	0.314

Source: Mac and Willford, 1986, p.86

"Preliminary review of PCBs in fathead minnows exposed to the Toledo Harbor sediments, Mac and Willford (Table 2) suggested a slight increase in residues during the exposure. However, the apparent increase was not statistically significant. Interpretation of the results was confounded by the finding of relatively high background levels of PCBs (preexposure = $4.46 \mu g/g$) in the fathead minnows used for testing. The presence of elevated background concentrations of PCBs in the fish most likely interfered with accumulation of PCBs as compared to that noted in earthworms."³⁷

"Residues of Hg in fathead minnows showed no significant change after exposure to Toledo Harbor sediments. These results thus confirmed those results obtained with earthworms indicating no significant accumulation of Hg from Toledo Harbor sediments."³⁷ "The bioaccumulation test is but one of several procedures available for evaluating sediments and, in dredging operations, for helping in evaluation of disposal options. The test appears to be most valuable in determining the bioavailability of contaminants present in sediments that are not considered highly contaminated or acutely toxic to aquatic organisms. When a particular sediment greatly exceeds bulk criteria for accumulable contaminants or is acutely toxic to organisms, there is little need or value in performing a bioaccumulation test." ³⁷

"Toledo Harbor sediments represent the type of materials for which bioaccumulation tests appear useful. Although the sediments contained relatively low levels of PCBs $(0.21 \,\mu g/g)$, the earthworms accumulated 2.56 $\mu g/g$ during a 10-day exposure. Even though we were unable to confirm significant accumulation of PCBs in the fathead minnows, we nevertheless believe that the test was successful in demonstrating the potential for bioaccumulation of PCBs by earthworms. The information thus should be helpful for use in selecting appropriate disposal options for dredged sediments that will protect against significant accumulation of contaminants in the tissues of organisms." ³⁷

McFarland and Peddicord, 1986, studied the potential for bioaccumulation from Toledo Harbor sediments. The four organisms tested were fathead minnows, golden shiner, Japanese Medaka, and Asiatic clams. When challenged with Toledo Harbor sediments, no priority pollutants other than phthalates were detected in tissues of these organisms, and these may have been from laboratory contamination. Also, fewer than 6% mortalities occurred during bioassays on the four test species. Table 28 displays the results of their analyses of Toledo Harbor sediments related to levels of organic priority pollutants.³⁸

McFarland and Peddicord, 1986 concluded that polynuclear aromatic hydrocarbons (PAH) were the compounds most likely to be bioaccumulated from Toledo Harbor sediments. Based on fluoranthene (a PAH) concentration in sediments (1.5 ppm) they calculated a thermodynamically-defined bioaccumulation potential for fluoranthene of 80.6 ppm in animal lipids. This translated to the following body burden for test animals:

Corbicula	Medaka	Fathead	Shiner
(2.4% lipid)	(9.8% lipid)	(.5% lipid)	(1.5% lipid)
1.94 ppm	7.90	4.03	1.21

No PAH were found in actual tissue. This can be explained by the fact that, unlike chlorinated hydrocarbons with similar octanol/water partition coefficients, PAHs are quickly broken down by the organisms mixed function oxidase system. Tissue residues of PAH are inversely correlated with the mixed function oxidase activity of an organism.³⁰

Chapman, et al, 1986, conducted bioassays with Toledo Harbor sediment on several organisms. "Prater-Anderson test series indicated little or no acute mortality of either *Daphnia* or *Hexagenia* exposed to the Toledo sediment system; although *Hexagenia* suffered 20% mortality in Toledo sediments; although *Hexagenia* suffered 20% mortality in Toledo sediments, control mortality was 13% indicating a possible problem with organism vitality."³⁹

In beaker tests *Daphnia* mortality was 14 and 0% in freshly-prepared test systems with sediments from Toledo and Porter Lake control, respectively. However, after sitting for one week, the systems produced essentially no *Daphnia* mortality during the second bioassay. "One can speculate that aged samples and elutriates tend to be closer to equilibrium than unequilibrated unmixed sediment-water systems. This could be the common thread linking the results of these toxicity tests; equilibrated systems lacked the toxicity of newly-

interfaced sediment and water. Would this phenomenon have occurred if we had used Toronto to Toledo Harbor water? Would these harbor waters have been toxic in their own chemistry?"³⁹ Table 28 displays the levels of organic priority pollutants found in the analyses of Toledo Harbor sediments by McGarland and Peddicord and Peddicord and Chapman, *et al.*

(in parts per million)
	McFarland and Peddicord, 1986	<u>Chapman, et al, 1986</u>
Methylene chloride	0.036	
Dichlorobiphenyls (PCB)	0.120	
Trichlorobiphenyls (PCB)	0.220	
Tetrachlorobiphenyls (PCB)	0.680	
Pentachlorobiphenyls (PCB)	0.100	
Hexachlorobiphenyls (PCB)	0.180	
Total PCB	1.300	
BIS (2 ethylhexyl) phthalate	8.800	8.500-10.600
Acenaphthene (PAH)		0.100
Acenaphthylene (PAH)		0.062-0.065
Fluorene (PAH)		0.089.0.160
Naphthalene (PAH)		0.140-0.610
Anthracene (PAH)	0.98	0.077
Fluoranthene (PAH)	1.500	0.210-0.600
Phenanthrene (PAH)	0.980	0.480-0.610
Benzo(a)anthracene		0.670-0.730
Benzo(k)Fluoranthene (PAH)		1.100-5.909
Chrysene (PAH)		1.000-5.909
Pyrene (PAH)	2.000	0.580-0.870
Benzo(ghi)perylene (PAH)		0.600
<u>Benzo(a)pyrene (PAH)</u>		0.600-0.770

TABLE 28 ORGANIC PRIORITY POLLUTANTS IN TOLEDO HARBOR SEDIMENTS (in parts per million)

To determine whether the concentration levels for PAHs in the Toledo Harbor sediments should be of concern, TMACOG forwarded the 1983 Corps of Engineer's data results (see Table 29) to Dr. Paul Baumann, U.S. Fish & Wildlife. These data included the Corps station number by lake and river mile along with the concentrations for the following chemicals: Phenanthrene, Fluoranthene, Pyrene, B(a)A, Chrysene B(k)F and B(a)P. Baumann stated in written communication that "PAH concentrations at these sites are at the lower end of the range of values for sites with cancer epizootics. However, I would consider these concentrations to pose a possible problem and to be of concern."⁴⁰

Further, Baumann stated, "Since PAHs are not very soluble in water and stay in sediment close to the point source (concentrations after decline as a log function from the point source), and especially since RM 1 values are often higher than RM 2 or RM 3 values but lower than RM 4 values, it appears as if you have at least two separate point sources, one near RM 1 and one near RM 4. With additional sampling and some checking of what industries have outfalls in these areas (any coke plants associated with steel companies?), you should be able to track down the sources."⁴⁰

Table 29 lists only those chemicals that *were* detected in Toledo Harbor sediments. It also gives the river or lake monitoring station at which the chemical was detected, the concentration found, and detection limits for the testing procedures used.

TABLE 29 TOLEDO HARBOR CHEMICAL SEDIMENT ANALYSES US ARMY CORPS OF ENGINEERS DATA

CHEMICAL	DETECTION LIMIT	CORPS STATION	CONCENTRATION mg/kg (dry wt. basis)
Bis(2ethylhexyl)Phthalate	0.20	LM3 LM2 LM1 MOUTH RM1 RM2 RM3	0.24 0.23 0.42 1.69 0.22 1.20 0.49
		RM4 RM5 RM6	1.50 0.94 0.48
Phenanthrene (PAH)	0.10	RM1 RM2 RM3	0.15 0.17 0.10
		RM4 RM5	1.45
Anthracene (PAH)	0.10	RM4	0.10
Fluoranthene (PAH)	0.10	RM1 RM2 RM4 RM5	2.70 0.25 3.03 0.79
		RM6	0.26
Pyrene (PAH)	0.10	RM1 RM4 RM5 RM6	1.24 2.24 0.62 0.20
Benzo(a)Anthracene (PAH)	0.10	RM4	1.01
Chrysene (PAH)	0.20	RM4	1.43
Benzo(k)Fluoranthene (PAH)	0.20	RM4	0.77
Benzo(a)Phrene (PAH)	0.20	RM1 RM4	0.74 0.62

Table 30 displays a comparison of the analytic results of these four studies of the Toledo Harbor sediments with the Great Lakes International Surveillance Plan, 1986, analysis of heavy metals on Western Basin sediments. Cyanide and PCB levels, where available, are also included in the table.

	Western Basin Background Levels GLWQB	Toledo Harbor Munawar & Thomas	Toledo Harbor Chapman, et al	Toledo Harbor McFarland & Peddicord	Toledo Harbor Mac & Willford
Hg	0.1	0.130-0.625	-	0.63	0.314
PĎ	28.0	49.0-88.0	62.0	65.0	-
Zn	70.0	166.0-285.0	23.0	220.0	-
Cu	30.0	34.0-55.0	47.0	50.0	-
Cd	2.0		4.0	2.8	
Mn	600.0	-	-	-	-
As	N/A	11.0-17.0	-	-	-
Cr	N/A	117.0-177.0	100.0	57.0	-
Ni	N/A	30.0-36.0	83.0	48.0	-
Cyan	•	-	-	2.7	-
PCB	<u>N/A</u>	0.279-0.678	666	**	0.210

TABLE 30 COMPARISON OF TOLEDO HARBOR AND WESTERN BASIN SEDIMENTS (in parts per million)

One of the problems with the existing sediment data in Toledo Harbor is that most of it comes from areas of the harbor that are periodically dredged by the Corps of Engineers. We perceive a need to sample the harbor and tributaries in a uniform manner covering areas previously unsampled for priority pollutants. Sampling should be thorough enough to allow the plotting isopleths. Tributaries to Toledo Harbor which are likely sources of priority pollutants such as the Maumee River, Ottawa River, and Otter Creek should also be sampled.

Unfortunately, nationwide sediment quality criteria currently do not exist. It is our understanding that EPA at the national level is developing national sediment quality criteria, but a final document is 1-3 years away. However, some preliminary attempts at criteria development have been completed. The EPA has developed guidelines for the pollution classification of Great Lakes harbor sediments for evaluation of dredged material disposal. As part of EPA's evaluation process for the development of sediment criteria, a paper entitled "A Discussion of PCB Target Levels in Aquatic Sediments" has been prepared by Mr. Jay Field of the Ocean Assessments Division, National Oceanic and Atmospheric Administration. The conclusion in this paper is that although toxic effects may occur at lower levels, a sediment concentration of 0.1 ppm PCBs appears to be a reasonable preliminary target level for use in assessing environmental hazards from PCB contamination and the need for remedial action. This compares to an average value of 0.21 to 1.3 ppm for the area of Maumee Bay dredged for navigation. Although national sediment quality criteria have not been completed, it appears that the sediments of the AOC are of concern and may be above future criteria levels.

Summary of Toxic Pollutants

- 1. Toxic substances have caused injuries to Lake Erie. There is at the present time a health advisory against eating carp or channel catfish from Lake Erie due to high PCB levels (over 2 ppm) in their flesh.
- 2. Sediment contamination is the most conspicuous problem in all the AOCs. There is a lack of thorough quantitative pollution data for the Toledo AOC.

- 3. A larger portion of Lake Erie PAHs are associated with particles than any of the other Great Lakes. Sediments in the Western Basin of Lake Erie have twice the PCB levels of the Central Basin and Eastern Basin. Contaminant release rates from resuspended sediments are unknown.
- 4. Some of Lake Erie's metal pollution originates on Lake Erie's southern shore. A "plume" of high sediment lead levels emanates from Toledo.
- 5. Chapman, 1986, speculated that equilibrated sediment/water systems are less toxic than newly interfaced sediment and water. This has direct bearing on the effects of dredging and other disturbances of bottom sediments. Further study could be required.
- 6. Laboratory studies by Munawar and Thomas, 1986, indicate that Toledo sediment elutriate caused up to 35% reduction in algae growth when diluted to 20% of its original strength.
- 7. Mac and Willford, 1986, demonstrated that earthworms accumulated PCBs from Toledo Harbor sediments. The AOCs contribution to Lake Erie's PCB pollution problem requires further study and quantification.
- 8. Most of the data here reviewed comes from the navigation channel and may not adequately reflect pollutants in other parts of the AOC.

RAP AREA WATER QUALITY: OVERVIEW & CONCLUSIONS

The *Maumee Basin BWQR* provides a clear summary of how good or bad the water quality is at many points along each major stream. Each segment is rated for its water quality, and the sampling points range from "very poor" to "excellent."

The BWQR graphs give a clear picture of water quality along Swan Creek, the Ottawa River, and the Maumee. In all three cases, water is cleanest far upstream. The Maumee River upstream water quality (the Napoleon area around river mile 50) was excellent, Tenmile Creek upstream water quality was fair to marginally good and Swan Creek was rated as fair. The streams get progressively worse as they approach and enter Toledo. All three show some recovery near their mouths, which may be due to the occasional inflow of relatively clean water from Lake Erie.

The data provided by other sampling programs supports the BWQR's conclusions. The TESD data provides substantially the same picture of water quality, and the US Army Corps of Engineers' sediment data points to the same problem areas along the major streams.

One of the things the BWQR data misses is the seasonally high concentration of NO_3 in the Maumee which occurs in the spring and fall. However, the BWQR was not designed to measure seasonality. NO_3 in the Maumee at these times of year often makes the water unacceptable as a public water supply source.

The USGS/Heidelberg University data collected at the Waterville station on the Maumee provides a record of water quality as it enters the RAP Area. It includes a substantial body of information on water quality parameters associated with agricultural runoff, which are not monitored anywhere else in the RAP Area.

The majority of other studies are focused on documenting specific known water quality problems. The Facilities Plans, for example, provide information on CSO problems, malfunctioning package plants, and failed septic systems. They are especially useful in determining severe effects of untreated sewage on small streams. In terms of the greater Lake Erie Basin, these problems are not significant, but pose a serious health threat, and are disastrous to the water quality of local streams.

In addition, the Invertebrate Community Indices, fish tissue data, and sediment analyses show violations of the "swimmable-fishable" goals of the Clean Water Act for the tributaries to the Maumee Bay. Further, there is the inability to meet the specific objectives of the Great Lakes Water Quality Agreement for these lower stream reaches due to toxic pollutants.

Aquatic life use attainment for the Maumee River becomes non-attainment at RM 9.4 and persists all the way into Maumee Bay. The fish species investigation in 1986 for both the Maumee River and Swan Creek show a 50% decline since 1981. The fish community composite and quality values drop 2 points on the Maumee River from upstream at the Grand Rapids dam to the Swan Creek confluence. From there these values drop another point to the mouth.

PAHs and phthalates have been found at detectable levels in the Maumee River shipping channel sediments, wherein the PAH concentrations could pose a possible problem and must be of concern. Studies of the Toledo Harbor sediments have not shown sediment bound pesticides at levels high enough to arouse concern. Dioxins and furans have not been studied.

Impacting water quality on the Ottawa River are the wall-to-wall dumps which leak conventional and organic priority pollutants. The degradation of Otter Creek is directly related to arsenic leaking from settling ponds, with oil soaked banks, and nickel and cyanide being detected in its waters.

In terms of the greater Lake Erie Basin, phosphorus is considered the critical nutrient contributing to eutrophication. Ohio EPA's Phosphorus Reduction Strategy for the Lake Erie Basin states that a total loading reduction of 1365 tons P/year needs to be achieved⁵³. This is for the entire Lake Erie Basin in Ohio, in which, the Maumee Basin is one of the major sources. Total phosphorus loadings to the basin from various sources in the RAP Area are estimated and displayed in Table 31.

TOTAL:	1416		
Atmospheric Deposition	Insufficient data		
Landfills & Dumpsites	Insufficient data		
Home Sewage Disposal	Insufficient data		
Industrial Wastewater	Refer to Appendix		
CSOs	Insufficient data		
Package Plants	9		
Urban Runoff	21		
POTWs	189		
Agricultural Runoff	1197		
SOURCE	Tons P/year		
PHOSPHORUS	ESTIMATED LOADING		

TABLE 31 TOTAL PHOSPHORUS LOADINGS FROM RAP AREA SOURCES

78

WATER POLLUTION SOURCES

INDUSTRIAL WASTEWATER DISCHARGES

Industrial wastewater dischargers cover a broad range of types of facilities. Examples include treated chemical discharges from plating operations, cooling water from power generating stations, quarry dewatering from crushed stone producers, lime sludge from municipal water treatment plants, and treated process wastes from diverse manufacturers, such as food processing, automotive, plastics, and glass. Some NPDES permits fall into more than one category. For example, a manufacturer may have process wastes, site runoff, and a package sewage treatment plant. An NPDES permit deals with this situation by issuing discharge standards for three different outfall points.

At present, there are 60 NPDES permits in the Maumee RAP Area which breakdown as follows:

- 0 Agricultural
- 2 Electric Utility
- 30 Industrial and Miscellaneous
- 2 Landfill
- 4 Quarry & Crushed Stone Producer
- 18 Municipal and other Sewage Treatment Plants
- 4 Municipal Water Treatment Plants

Out of these 60 permits, the status is as follows:

- 24 or 40% were not current on January 1, 1988
- 42 or 70% are active
- 4 or 6% are being sewered
- 1 or 1% are revoked or inactive
- 12 or 20% are expired

An "Active" permit is presently in operation. "Being sewered" means that the permit is active, but a sewer line is being built which will eliminate the discharge. A permit that is "Revoked" has been revoked by Ohio EPA because the facility is no longer discharging. "Inactive" means the facility is not presently discharging. "Expired" means the facility is in operation and discharging, but the permit has not yet been renewed.

There are presently no Findings and Orders for industrial NPDES dischargers in the Maumee Basin RAP Area. A list of NPDES Permits in the RAP Area, with notes on their present status and compliance, is given in Table 32. The source of these notes is from discussion with personnel of Ohio EPA NW District Office and Toledo Environmental Services Division, and the files of those agencies.

A complete listing of NPDES permits is given in Appendix C.

Ohio EPA is considering issuing NPDES permits for stormwater runoff to other facilities that presently have no permits. One is the Evergreen Landfill, in Northwood. Others are the truck stops in the Interchange-Five area of Lake Township, in Wood County. The truck stops and their effect on local streams will be evaluated after the sanitary sewer to serve the area has been completed in Summer, 1988.

TABLE 32NOTES ON NPDES DISCHARGERS

NPDES DISCHARGER	STREAM	RM	NOTES
ASHLAND OIL COMPANY NFDES: 21G0006*ED OLD NAME:	Maumee River	1.8	Permitted to treat ship ballast, but does not receive much, usually 2 to 4 times/year. Stormwater, 17,300 gpd, is treated separately.
BENTBROOK FARMS NPDES: 2PG00002 OLD NAME:	Ten Mile Creek		
BCMLING GREEN WTP NPDES: 21W00010 OLD NAME:	Maumee River	22.8	Presently backwash solids are being discharged to the Maumee River. Backwash lagoons are being designed, and in the future, backwash water will be recycled. New penmit is being processed.
CSX-CHESSIE-PRESQUE ISLE NPDES: 21T00013 OLD NAME: C&O, Chessie	River	0.1	" Has had oil leak problems in the past. No information is available on the sewage treatment plant. A new permit is being processed, and the facility will be inspected before issuance.
CSX-CHESSIE-WALBRIDGE TERMINAL NPDES: 21100002*CD OLD NAME: C&O, Chessie	Cedar Creek		Site runoff is treated, which includes a lot of oil and grease. Effluent quality is good.
CENTENNIAL MANOR NPDES: 2PY00000*DD OLD NAME:	Ten Mile Creek	2.0	
CHARTER HOUSE INN NPDES: R 725 *AD OLD NAME:	Crane Creek	**	
CONRAIL NPDES: 21T00015*AD OLD NAME: Penn Central	Unnamed Tributary		**************************************
CONRAIL-STANLEY YARD NPDES: 21T00007*CD OLD NAME:	Cedar Creek		********** Problem Discharger ******** There was a major oil spill from this facility in March '88, and oil in the effluent is a continuing problem. The treatment lagoons are old, and need improvements for better control.
DIVERSI TECH GENERAL NPDES: 21Q00012*BD OLD NAME:	Ottawa River	6.0	Has had oil problems in effluent in the past. New oil separator has been installed, with a Permit To Installed being submitted after the fact. A white solid (resin) in the effluent has been an occasional problem (TESD notes: twice in the past ten years). Toxic organics (in low concentrations) have been found in the effluent. The present NPDES permit does not have limits for these chemicals. Ohio EPA expects to add them the next time the permit is renewed.
DOEHLER-JARVIS/FARLEY,	Shantee		********* Problem Discharger ********
PLANT 2 NPDES: 21C00021*FD	Creek	*******	Effluent includes a milky-white discharge (machine coolant). Both TESD and Ohio EPA have received complaints about this facility.
DUPONT DE NEMOURS, FORMALDEHYDE PLANT NPDES: 21F00017*CD	Ottawa River	4.8	There was at one time a formaldehyde leak to the stornwater lagoon (the NPDES Pennit for this facility is for non-contact cooling water). Since that time, the lagoon has been eliminated. Ohio EPA plans reinspection.
DUPONT DE NEMCURS, PAINT PLANT NPDES: 21F00016*DD	Blodget Ditch		Effluent quality is good.
FONDESSY ENTERPRISES NPDES: 21N00013*CD OLD NAME: Envirosafe	Otter Creek	2.3	One outfall had a problem with NH3 violations several years ago, but is now meeting effluent limits. Runoff covered by this permit is from the truck area, not the landfill. Landfill runoff goes to Otter Creek. Runoff from the Land Farm collected and taken to a storage tank, sampled, and discharged to the Toledo sever system. It is sampled and discharged to the Toledo sanitary sever system and is subject to Toledo's pretreatment program. The land farm is located at Cedar Point & Wynn, and was used for disposal of oily wastes. This practice has been discontinued. Wastes are
			collected, trucked, and sampled by Millren.

Maumee Basin *Remedial Action Plan Investigation Report*

			n
FRANCE STONE CO., SILICA PLANT NPDES: 21J00039*FD	Ten Mile Creek	2.0	This facility is in compliance with its NPDES permit.
FRANCE STONE CO., WATERVILLE	Maumee River	22.2	This facility is in compliance with its NPDES permit.
NPDES: 21J00047	********	*****	Old permit records had the address as 600 S. River Road, while the '87 Toledo phone book says 700 River Rd. I'm leaving the old phone number in the database; the best the new phone book has to offer is a number for the lab, which is 878-9606.
FULLER'S CREEKSIDE ESTATES NPDES: 2PH00000*ED	Shantee Creek		
GENERAL MILLS NPDES: 21H00093*BD	Jamieson Dítch		************ Problem Discharger *********
OLD NAME:			Effluent has shown violations of BCD, SS, and pH limits. BCD has shown some improvement. The problem comes from organic matter from the air pollution control equipment on the roof. This material is washed off the roof by rain, and results in a high-BCD wastewater.
HARBOR VIEW, VILLAGE OF NPDES: 2PA00012*CD OLD NAME:	Maumee Bay		This facility is not in compliance with its NPDES Permit. Findings and Orders have been issued. See discussion under POTWs for details.
HASKINS WATP NPDES: 2PA00026*CD	Liberty Hwy. Ditch		This facility is in compliance with its NPDES permit.
OLD NAME:	iny: Dicui	_	Haskins WMTP is at RM 1.0 of Liberty High Rd Ditch. It empties into the Maumee at RM 21.6.
HYDRA-MATIC NPDES: 21C00026*CD OLD NAME: GMC Chevrolet	Silver Creek		" State of the art stornwater system. This facility is in compliance with its NPDES permit. -
JEEP CORPORATION NPDES: 21C00022 OLD NAME:	Ottawa River	7.6	New NPDES Permit is being drafted. Process waste goes to Toledo sanitary sewer. This permit is for site runoff. There are other outfalls (runoff) that are not covered by the permit. High water levels in the Ottawa River cause stream water to backflow into the treatment system. There is a lot of garbage (litter) in the stream at this site. It comes not from Jeep, but its employees
KERN-LIEBERS USA NPDES: 21C00056 OLD NAME:	Wolf Creek	4.1	This facility is in compliance with its NPDES permit. Ohio EPA is processing a draft permit for renewal.
KING ROAD	Ottawa	4.5	*********** Problem Discharger *********
SANITARY LANDFILL NPDES: 21N00079*AD	Rîver		Ohio EPA enforcement actions are pending on this facility. OEPA's Draft Plan of Study for the Maunee BWOR notes that NH3 discharged here is 'highly elevated.' Contamination of local groundwater has been documented. This facility is an old dump. When closed, the dump was covered with sand, which allows rain water to infiltrate. In places, the cover has worn away, leaving garbage exposed on the surface. Because of the lack of impermeable cover, there is no runoff from the site. Rain water soaks into the dump and enters the Ottawa River as leachate, which contains high concentrations of BCD and NH3.
			What needs to be done:
			 * Hydrogeological study of the area * City water for residents * Clay cap on the old dump * Fence to prohibit new dumping
LIBBEY CHENS FORD -	Otter	6.6	*********** Problem Discharger *********
PLANTS #4 AND #8 NPDES: 21N00030*DD	Creek		Even though this plant is no longer producing, it still has an active NPDES permit. There is leachate from the lagoon through weep-holes. The lagoon has been dewatering faster than expected, and flow from weep-holes has gradually decreased. Leachate running out of banks is collected and discharged to the Toledo sanitary sever system. The problem is that Otter Creek runs through an old, leaky sever under the lagoon. This facility formerly produced laminated car glass. Leachate contains phthalate esters, dienoctyl Phthalate, and 2-m-butyl Phthalate. Monitor for As also, but none has been found. LOF's plans call for 1] dewatering the lagoon at this site, 2] divert Otter Creek so that it will no longer flow under the lagoon. Time frame for completion of this work is march, 1989.

Maumee Basin *Remedial Action Plan* Investigation Report

NOTES ON NPDES DISCHARGERS, CONTINUED

LIBBEY OWENS FORD	Maumee	6.9	- ********** Problem Discharger ********
FLOAT GLASS PLANT #6 NPDES: 2IN00030*ED	River		An outfall from this facility discharging to the Maumee at the Ross- ford Marina was discovered in Fall, 1987. Samples from this effluent contained Arsenic. A system of perforated collection tiles was completed in September, 1988. The leachate is be pumped to the Toledo sanitary sewer system.
LINCOLN GREEN SUBDIV. NPDES: H 704 *AD OLD NAME:	Potter Ditch	••	
LIQUID CARBONIC CORP. NPDES: 21N00069 OLD NAME:	Otter Creek	1.9	Discharge is from package sewage treatment plant, which is oversized for the number of employees. But the site is unsuited for a septic system.
MARATHON OIL COMPANY NPDES: 21G00024*ED OLD NAME:	Driftmeyer Ditch		This facility is in compliance with its NPDES permit.
MALMEE RIVER WATP NPDES: 2PK00000*DD OLD NAME:	Maumee River	18.2	This facility is in compliance with its NPDES permit.
MEDUSA PORTLAND CEMENT COMPANY NPDES: 21N00032	Termile Creek	5.3	Medusa Cement shut down in '82 or '83, but may have resumed operations. Hasn't reapplied for a discharge permit.
MIDLAND-ROSS SURFACE COMBUSTION DIV. NPDES: 21N00072*	Williams Ditch		This facility is in operation, but may have eliminated its discharge.
NORFOLK SOUTHERN RR NPDES: 21T00005*BD OLD NAME: N&W RR	Duck Creek		This facility is in compliance with its NPDES permit. The wastewater from this facility is runoff containing oil. A treatment lagoon is used.
OAK OPENINGS - FALLEN TIMBERS PLAZA NPDES: 2PP00003*CD	Murbach Ditch		-
OAK OPENINGS INDUSTRIAL PARK NPDES: 2PHOO013*CD	Kujawski Ditch	**	This facility is in compliance with its NPDES permit.
OAK TERRACE NPDES: 2PHOOO14*CD OLD NAME:	Butler Ditch		This facility is in compliance with its NPDES permit.
OREGON SOUTH SHORE PARK WATP NPDES: 2PB00007*CD	Maumee Bay		This facility is not in compliance with its NPDES Penmit. Findings and Orders have been issued.
OREGON WTP NPDES: 21W00220*BD OLD NAME:	Berger Ditch		This facility is in compliance with its NPDES permit.
CREGON WATP NPDES: 2PD00035*ED OLD NAME:	Maumee Bay		This facility is in compliance with its NPDES pennit.
OWENS-ILLINOIS, LIBBEY PLANT 27 NPDES: N 275 *AD	County Ditch #1139		Ohio EPA is processing a new penmit for this facility. A reinspection is planned.
PERRYSBURG WITP NPDES: 2PD00002 OLD NAME:	Maunee River	14.5	This facility is not in compliance with its NPDES Penmit. Findings and Orders have been issued. See discussion under POTWs.
PETROLELM FLEL & TERMINAL CO. NPDES: 2IGO0013 OLD NAME: Shell, Apex	Maumee River	2.2	This facility is in compliance with its NPDES permit.
PLASKON ELECTRONIC MATERIALS NPDES: 2IF00000*CD OLD NAME: Allied Chem.	Delaware Creek	1.2	This facility is in compliance with its NPDES permit.
REICHERT STAMPING NPDES: 2ISO0008*ED OLD NAME: Tol. Steel Tube	Ten Mile Creek	5.1	This facility is in compliance with its NPDES permit.
STANDARD OIL - HILL AVE TERMINAL NPDES: 2IB00010*CD	Fleig Ditch	11.1	This facility has occasional effluent quality problems, but is generally in compliance with its NPDES Permit. The effluent has been sampled for organic chemicals. None were found.

Maumee Basin *Remedial Action Plan* Investigation Report

NOTES ON NPDES DISCHARGERS, CONTINUED

STANDARD OIL - TOLEDO REFINERY	Maumee Bay	0.4	This facility is in compliance with its NPDES permit.
NPDES: 21G00007*DD			Package sewage treatment plant(s), tributary to the main treatment plant may be in use here.
STONECO - LIME CITY PL.	Dry Creek		This facility is in compliance with its NPDES permit.
NPDES: 21J00052*CD OLD NAME: Maumee Stone Co.			Sewage was once treated with a package plant here. It has been replaced by a septic system.
STONECO - MALMEE PLANT NPDES: 21J00048*CD OLD NAME: Maumee Stone Co.	Graham Ditch	**	This facility is in compliance with its NPDES permit.
MARINE TERMINAL MARINE TERMINAL NPDES: 21G00009*CD OLD NAME:	Maumee River	6.5	This facility is in compliance with its NPDES permit.
SUN PETROLEUM -	Otter	4.9	********** Problem Discharger *********
TOLEDO REFINERY NPDES: 21G00003*FD	Creek		There have been overflow bypasses from this facility. Effluent sampling has found oil, phenol, Cr, Sulfide. A new Permit for this facility will be issued in 1989.
TELEDYNE INDUSTRIES NPDES: 21000001*ED OLD NAME:	Silver Creek		This facility is in compliance with its NPDES permit.
TOLEDO BAY VIEW PARK WITP NPDES: 2PF00000*GD	Maumee River	1.4	This facility is in compliance with its NPDES permit. See discussions under POTWs and CSOs for detailed information.
TOLEDO COKE NPDES: 21D00011 OLD NAME: Koppers	Maumee River	1.7	This facility is in compliance with its NPDES permit.
TOLEDO COLLINS PARK WTP NPDES: 21E00260*BD OLD NAME:	Duck Creek	3.4	This facility is in compliance with its NPDES permit. There was a major spill of backwash (lime) sludge in the past, which is in the process of being excavated from Duck Creek: 6000-8000 cy in '87, and 9000 cy planned for '88. The backwash lagoons are nearly full of sludge, and will be excavated: 20-30 kcy '88, 70 kcy in '89, and 90 kcy for each of the next three years.
			the ficke unice years.
TOLEDO EDISON - ACME STATION NPDES: 21B00001*CD	Maumee River	4.0	This facility is in compliance with its NPDES permit.
TOLEDO EDISON BAYSHORE PLANT	Driftmeyer Ditch		This facility is in compliance with its NPDES permit.
NPDES: 21B00000*1D			Besides cooling water and sewage, the Bayshore plant also has ash ponds, which are rarely used. They exist, and Toledo Edison has them on the discharge permit only in case of emergency. Exception: the bottom ash pond is in constant use.
UNION 76 TRUCK STOP AND RESTALRANT NPDES: R 724 *AD	Crane Creek		
WATERVILLE WTP NPDES: 21V00080*BD OLD NAME:	Maumee River	21.1	This facility is in compliance with its NPDES permit.
WHITEHOUSE WATP NPDES: 2PB00062*CD OLD NAME:	Discher Ditch		This facility is not in compliance with its NPDES Permit. See discussion under POTWs for details. An interceptor to tie Whitehouse into the Lucas County sanitary sewer system is expected to be in use by the end of 1988.
WOODSIDE TERRACE TRAILER PARK NPDES: S702*BD	Wolf Creek		
ATLANTIC RICHFIELD, INC.			Inactive facility
GERKEN MATERIALS			Inactive facility
NORTHERN ASPHALT PAVING (0	**	Inactive facility

· 1

1

LOF Comments on NPDES Discharges

LOF, in cooperation with the City of Northwood, has for some time been working toward the diversion of the major branch of Otter Creek from its current path beneath the former settling ponds. The settling ponds were established to hold grinding and polishing materials utilized in the glass manufacturing process at the LOF East Toledo Facility. LOF anticipates concluding its agreement with the City of Northwood for the diversion in the very near future, with work beginning soon after that.

While it is true that constituents from the liquid effluent in the settling ponds enter Otter Creek, LOF does monitor this discharge monthly, and that data is reported to both Ohio EPA and U.S. EPA, Region V. Due to the nature of this discharge, it is thought that the impact is minimal as shown by the NPDES samples.

The draft report specifically notes the presence of phthalates in the discharge. This is true, however, the levels of phthalates recorded by the NPDES monitoring are thought to be too low to have a significant impact on water quality. In fact, some monitoring reports have recorded no detectable levels of phthalates.

Another subject mentioned in the report is a discharge from the former settling ponds at the Rossford Float Glass Plant #6. These settling ponds are very similar in nature to those at the East Toledo Facility, which were described previously. LOF applied for, and has received from Ohio EPA, a Permit-to-Install for an Aggregate Drainage Collection System at the Rossford facility. This system will collect a discharge from the former settling ponds and direct it to the Rossford wastewater treatment facility. Construction of this system is well underway, with a projected completion date of early August, 1988.

MUNICIPAL WASTEWATER DISCHARGES

There are twelve municipal sewage treatment plants, or "Publicly-Operated Treatment Works" (POTWs) in the RAP Area. These include city, county, and village sewage treatment plants, plus package plants that serve suburban or rural developments. The RAP Area POTWs are given in Table 33, with 1986 effluent data. This table includes information on what treatment plant served each area in 1986, and what treatment plant is planned to serve the area in 2005. Table 33 also includes present and projected populations, flow rates, and BOD₅, SS, and P discharges in tons per year (tpy). Projected discharges for BOD₅, SS, and P assume that the plants will produce the same quality effluent in 2005 as they did in 1986.

Phosphorus Loadings

As noted in Table 31, the total phosphorus discharge from RAP Area POTWs in 1986 was 188.5 tons. Many of the plants in the table are shown as discharging zero phosphorus. That is not because their effluent contains no phosphorus, but because these smaller plants are not required to monitor it. Using an estimated effluent phosphorus concentration of 2 ppm for extended aeration plants with filters, and 4 ppm without filters, the actual total phosphorus discharge would be higher than 188.5 tons per year. TMACOG has calculated that smaller plants contribute at least 9.4 tons per year (see section on Package Sewage Treatment Plants).

TABLE 33 MAUMEE BASIN RAP AREA POTWs Populations and Discharge Loadings

SANITARY SEWER SERVICE AREA	1980 & 2005 POP.	DSGN, 1986, & 2005 FLOWS	1986 & 2005 BOD LOADS	1986 & 2005 TSS LOADS	1986 & 2005 P LOADS
** LUCAS COUNTY ** Bentbrook Farms *** 1986: Bentbrook Farms WHTP 2005: Maumee River	1980 POP: 1,654 2005 POP: 1,831 1986 Flow: 72 gpcd	CAPACITY: 0.06 mgd 1986: 0.12 mgd 2005: 0.13 mgd	1986: 16.2 tpy BCD 2005: 18.0 tpy BCD	1986: 16.4 tpy TSS 2005: 18.2 tpy TSS	1986: 0.0 tpy P 2005: 0.0 tpy P
Fuller's Cr Est *** 1986: Fuller's Creekside Estates 2005: Toledo	1980 POP: 714 2005 POP: 714 1986 Flow: 378 gpcd	CAPACITY: 0.10 mgd 1986: 0.27 mgd 2005: 0.00 mgd	1986: 5.8 tpy BCD 2005: 5.8 tpy BCD	1986: 5.8 tpy TSS 2005: 5.8 tpy TSS	1986: 0.0 tpy P 2005: 0.0 tpy P
Lincoln Green *** 1986: Lincoln Green Subdivision 2005: Maumee River	1980 РОР: 2,352 2005 РОР: 2,861 1986 Flow: 68 gpcd	CAPACITY: 0.17 mgd 1986: 0.16 mgd 2005: 0.00 mgd	1986: 5.1 tpy BCD 2005: 6.2 tpy BCD	1986: 5.1 tpy TSS 2005: 6.2 tpy TSS	1986: 0.0 tpy P 2005: 0.0 tpy P
Lucas County 1986: Maunee River W/TP 2005: Maunee River	1980 POP: 33,397 2005 POP: 40,257 1986 Flow: 163 gpcd	CAPACITY: 15.00 mgd 1986: 9.01 mgd 2005: 12.42 mgd	1986: 127.2 tpy 800 2005: 155.4 tpy 800	1986: 209.1 tpy TSS 2005: 255.4 tpy TSS	1986: 11.5 tpy P 2005: 14.0 tpy P
Oak Openings 1986: Oak Openings Industrial Park 2005: Maumee River	1980 POP: 0 2005 POP: 0 1986 Flow: 67 gpcd	CAPACITY: 0.18 mgd 1986: 0.11 mgd 2005: 0.00 mgd	1986: 3.8 tpy BOD 2005: 4.7 tpy BOD	1986: 4.7 tpy TSS 2005: 5.8 tpy TSS	1986: 0.0 tpy P 2005: 0.0 tpy P
Cak Terrace 1986: Cak Terrace WHTP 2005: Maumee River	1980 POP: 0 2005 POP: 0 1986 Flow: 70 gpcd	CAPACITY: 0.00 mgd 1986: 0.10 mgd 2005: 0.00 mgd	1986: 0.7 tpy BCD 2005: 0.7 tpy BCD	1986: 1.2 tpy TSS 2005: 1.1 tpy TSS	1986: 0.0 tpy P 2005: 0.0 tpy P
Oregan ** 1986: Oregan WATP 2005: Oregan DuPant	1980 POP: 31,763 2005 POP: 38,365 1986 Flow: 114 gpcd	CAPACITY: 8.00 mgd 1986: 4.31 mgd 2005: 5.41 mgd	1986: 40.9 tpy BCD 2005: 49.4 tpy BCD	1986: 79.0 tpy TSS 2005: 95.8 tpy TSS	1986: 6.2 tpy P 2005: 7.4 tpy P
Oregon S Shore 1986: Oregon South Shore W/TP 2005: Oregon DuPont	1980 POP: 1,400 2005 POP: 1,670 1986 Flow: 350 gpcd	CAPACITY: 0.23 mgd 1986: 0.49 mgd 2005: 0.00 mgd	1986: 27.0 tpy BCD 2005: 32.3 tpy BCD	1986: 22.1 tpy TSS 2005: 26.4 tpy TSS	1986: 1.4 tpy P 2005: 1.8 tpy P
Toledo ** 1986: Toledo Bay View WWTP 2005: Toledo	1980 POP: 388,194 2005 POP: 388,851 1986 Flow: 234 gpcd	CAPACITY: 102.00 mgd 1986: 91.15 mgd 2005: 91.48 mgd	1986: 2,737.3 tpy BCD 2005: 2,741.9 tpy BCD	1986: 6,123.6 tpy TSS 2005: 6,133.8 tpy TSS	
Whitehouse 1986: Whitehouse WWTP 2005: Maumee River	1980 POP: 2,819 2005 POP: 3,915 1986 Flow: 113 gpcd	CAPACITY: 0.29 mgd 1986: 0.32 mgd 2005: 0.00 mgd	1986: 8.0 tpy BOD 2005: 11.1 tpy BOD	1986: 10.9 tpy TSS 2005: 15.3 tpy TSS	1986: 3.1 tpy P 2005: 4.3 tpy P
** WOOD COUNTY ** Haskins 1986: Haskins WWTP 2005: Haskins	1980 POP: 568 2005 POP: 723 1986 Flow: 105 gpcd	CAPACITY: 0.10 mgd 1986: 0.06 mgd 2005: 0.08 mgd	1986: 0.7 tpy BOD 2005: 0.9 tpy BOD	1986: 0.5 tpy TSS 2005: 0.7 tpy TSS	1986: 0.0 tpy P 2005: 0.0 tpy P
Perrysburg * 1986: Perrysburg WMTP 2005: Perrysburg	1980 POP: 17,612 2005 POP: 26,010 1986 Flow: 160 gpcd	CAPACITY: 2.75 mgd 1986: 3.00 mgd 2005: 4.48 mgd	1986: 119.2 tpy BCD 2005: 177.8 tpy BCD	1986: 241.8 tpy TSS 2005: 360.6 tpy TSS	1986: 8.7 tpy P 2005: 13.1 tpy P
** TOTAL PHOSPHORUS LOADING, 1986 *	*		*****		188.5 tpy P

The Perrysburg plant is being expanded to 5.4 mgd **

Toledo and Oregon each own and operate one package plant not listed here, because these plants do not have NPDES permits. The Oregon plant is a 5000 gpd unit that serves the City Municipal Building on Seaman Road. The Toledo plant is a 40,000 gpd package plant that serves the House of Correction in Waterville Township.

*** This plant is soon to be replaced with a tap to the Lucas County sanitary sever system. All three facilities listed are presently in the design or bid phase.

NOTE: Zero population denotes no information available. Zero flow for 2005 means this plant is expected to be abandoned by then.

Further details are given on these facilities in Appendix E.

Ohio EPA has current Findings and Orders issued for a number of POTWs. Holders of NPDES permits are required under the Clean Water Act to be in compliance with their permits by July 1, 1988. That is the deadline for all Findings and Orders. Current Findings and Orders are detailed in Table 34.

TABLE 34 POTW FINDINGS AND ORDERS

SERVICE AREA/FACILITY	CUNER/OPERATOR	NPDES NO.	ORDERS TO:	DATE	
Harbor View	Harbor View	2PA00012*00	Build or tap into system	1985	
Interchange-Five Area	Wood Co S.D. #120	None		1986	To be sewered
Maumee	Maumee	None	CSOs	1985	4-Phase CSO project
Oregon S. Shore Park	Oregon	2P600007*CD	Effluent Limits	1986	
Perrysburg	Perrysburg	29000002*00	Effluent Limits	1985	Expand W/TP
<u>Whitehouse</u>	Whitehouse	29800062*80	CSOs, effluent limits	1987	To tap into County system

Status Of Facilities With Findings And Orders

Harbor View

Harbor View has sanitary sewers, but cannot use them. The City of Oregon received a grant for a Facilities Plan for Harbor View and the surrounding portions of Oregon. The Facilities Plan²⁸ recommended construction of an interceptor sewer to serve the area. HUD awarded a grant to the Village of Harbor View for construction of local sanitary sewers, among other improvements, but EPA did not award a grant for construction of the interceptor.

Interchange-Five Area

Sanitary sewers to serve the Interchange Five area are being designed. These sewers will connect to the existing Wood County sanitary sewer system. Wastewater will receive treatment at the Toledo Bay View WWTP.

Luckey

The Village of Luckey has constructed interceptor sewers and a sewage treatment lagoon system. They went into operation in late 1987.

Maumee

The City of Maumee is separating its combined sewers in four-phases, spaced at three-year intervals. The first phase has been completed. The separation program is scheduled for completion in 1996. This construction program will result in the elimination of 90% of the combined sewage bypasses. User fees, direct assessments and City funds will be used to finance the estimated \$4 million cost of these improvements.

The existing combined sewer will serve as a sanitary sewer, and will be smoke tested to remove as many "clean water connections" (downspouts) as possible. The regulators will remain in place with slide gates controlling overflow to the river. It is estimated that a 10% inflow component from foundation drains will remain in the system. The construction schedule by district is as follows:

White Street District	1987
Sackett Street District	1990
Allen Street District	1993
Duane Street District	1996

Oregon South Shore Park

The subdivision of South Shore Park in Oregon is served by sanitary sewers and its own treatment plant. The system, however, has a severe inflow problem, and the plant is overloaded by excess flow. The City of Oregon plans to construct an interceptor along Bayshore Road to connect South Shore Park to the main wastewater treatment plant on DuPont Road. When the Bayshore Road interceptor is built, the South Shore Park treatment plant will be abandoned. Construction of this interceptor will also be necessary to extend service to the Harbor View area.

Perrysburg

Perrysburg is expanding its treatment plant from 2.75 mgd to 5.4 mgd. The expansion of the primary treatment facilities has been completed; expansion of the second treatment facilities is in progress. Vacuum-assisted drying beds have also been added to the plant to improve sludge-handling capabilities.

Whitehouse

The Whitehouse Facilities Plan⁴¹ calls for the Village of Whitehouse to abandon its existing sewage treatment plant, and tie into the Lucas County system. The Village of Whitehouse has submitted plans to Ohio EPA for construction of an interceptor to tie into the County system. Construction will be completed in 1988.

PACKAGE SEWAGE TREATMENT PLANTS

Package treatment plants frequently cause water quality problems. These are privately and publicly-owned treatment plants that serve mobile home parks, marinas, or restaurants in an unsewered area that produce too much wastewater for a septic tank. There are quite a few package plants in the Swan Creek watershed, especially around Toledo Express Airport, and on the fringes of the Toledo and Lucas County sewer systems.

Package plants are not a large source of pollution, in terms of the overall Great Lakes Basin, They are estimated to contribute roughly 1% of the phosphorus which reaches Lake Erie.⁴² However, an improperly operated package plant can have a severe effect on its receiving stream, resulting in a local health problem.

Past Work

TMACOG staff has worked with OEPA and County Health Departments in the past on constructing inventories of package plants, and working with the owners and operators of the facilities to improve performance.

Problem Summary

Most package plants use the "extended aeration" process, which is similar to the "conventional activated sludge" process commonly used by municipal sewage treatment plants. Package plants cause problems for a number of reasons, which are discussed below. The discussion below should be taken as a broad generalization. There are nearly a hundred package plants in Lucas County, and some of them *are* well-operated and maintained.

LACK OF TRAINING AND IMPROPER OPERATION

The extended aeration treatment process is complicated, and unless the operator has received training, he probably will not understand it. Operating a package plant usually falls to a janitor, the manager, or the owner, depending on the particular situation. In most cases, the person operating the package plant has not had any training at all.

For municipal sewage treatment plants and other treatment facilities which have NPDES permits, the Operator is required to have a License; obtaining that License includes taking courses and passing tests. Most package plants are not required to have NPDES permits for the reason that there are too many around to keep track of, let alone inspect and regulate. Ohio EPA *does* issue NPDES permits for package plants under five conditions, however:

- 1. If the plant is operated by the County, or a municipality,
- 2. If the facility requires an NPDES permit for another wastewater discharge,
- 3. If the package plant is a known and continuing problem,
- 4. If the facility is PUCO regulation, and
- 5. If it is a State operated facility.

LACK OF MAINTENANCE

The maintenance problem is closely-related to the operation problem. Failure of the plant operator to understand proper operation directly results in many maintenance problems. Another maintenance problem is that the work tends not to get done for the simple reason that most people consider working on the sewage plant an unpleasant job. Unless somebody from EPA or the Health Department comes around to remind them, they tend not to do it.

LACK OF ENFORCEMENT

Ohio EPA has responsibility for enforcement for package plants. The main problem is that there are a lot of package plants around. Just keeping track of them has been a problem. Lack of staff to do field inspections and write letters has also been a problem.

Under a law passed in 1985, the County Health Department may contract with Ohio EPA to perform inspections and charge license fees for package plants under 25,000 gpd. Wood County has signed such a contract, but Lucas and Ottawa Counties have not. Lucas County, however, uses nuisance abatement and health statutes to conduct inspections, and attempts to visit plants monthly. They do not inspect plants which have NPDES permits. Enforcement actions remain the responsibility of Ohio EPA.

<u>Phosphorus</u>

In most cases, there is no data on what a given package is discharging, in terms of quantity of flow or nutrients. However, work *has* been done on what the effluent quality of an extended aeration package plant "typically" is. WPCF⁴³ and EPA⁴⁴ suggest figures of 2 ppm with filters and 4 ppm without. However, these values were obtained using trained plant operators. For purposes of estimating phosphorus loadings from package plants in the RAP Area, a figure of 4 ppm P will be used.

Using an estimated total package plant effluent volume of 2.09 mgd (see Appendix D), the total phosphorus contribution would be 12.7 tons/year. Deducting package plants listed in Appendix D which are *also* POTWs (Oak Terrace, Oak Openings Industrial Park, Bentbrook, Fuller's Creekside Estates, and Lincoln Green: see Appendix B) leaves a contribution of 9.4 tons P/year for the remaining plants. This number is an approximation, intended to put the phosphorus loading from this source in perspective with the other sources.

AGRICULTURAL RUNOFF WATER POLLUTION

The croplands of the Maumee River Basin are major sources of sediment, phosphorus, nitrate and pesticide loadings to the Maumee River System. These pollutants originate primarily upstream of the AOC and are transported to the lower Maumee River and Lake Erie where they negatively affect water quality.

We are fortunate to have an extensive record of sediment and nutrient loads for the Maumee River. The U. S. Geological Survey water quality monitoring site at Waterville Ohio has been in existence since 1950. The drainage area above the gauge is 6,330 square miles.⁴⁵

Sediment and nutrient loads for the Maumee have been reported by the Water 2Quality Laboratory of Heidelberg College as shown in Table 35.

TABLE 35HISTORICAL SEDIMENT & NUTRIENTS FOR THE MAUMEE AT WATERVILLE
(in metric tons)

YEAR	NO3+ NO2 NITROGEN	SUSPENDED SOLIDS	TOTAL PHOSPHORUS	SOLUBLE REACTIVE PHOSPHORUS
1982	1,280,000	2,820	576	28,400
1983	947,000	2,080	286	26,200
1984	1,080,000	2,660	389	35,450
1985	897,000	1,900	128	24,100
1986	1,221,000	2,434	··· ·· -	30,800
Saumaa	Unidalhana	Collogo Haton	Quality Lab	

Source: Heidelberg College Water Quality Lab

The extent to which these loads are attributable to non-point sources and particularly agriculture has been the topic of several significant studies and reports. Studies performed by TMACOG, the U.S. Army Corps of Engineers Lake Erie Wastewater Management Study, Pollution from Land Use Activities Reference Group (PLUARG) of the International Joint Commission, Great Lakes National Program Office, and Water Quality Laboratory of Heidelberg College have documented the magnitude and nature of the problems affecting the Maumee River. In addition, the Ohio EPA has prepared the State of Ohio Phosphorus Reduction Strategy for Lake Erie which in turn is included in the United States Task Force Plan for Phosphorus Load Reductions from Non-Point and Point Sources on Lake Erie, Lake Ontario, and Saginaw Bay.

The conclusions of these numerous studies provide the basis for our knowledge of the fact that agriculture is a major source of pollutants (sediment, phosphorus, nitrogen, pesticides) to the Maumee River. Phosphorus and sediment have received the majority of the attention because phosphorus has been identified as the key limiting nutrient in Lake Erie and sediment has been identified as the vehicle for transporting phosphorus. Nitrogen and pesticides have both received greater attention in recent years as public health issues.

Each of the pollutants originating from agricultural sources in the Maumee River and their impacts are discussed in the following sections of this report.

Sediment

Sediment is considered to be the most prevalent non-point source pollutant by volume. By Ohio law (Agricultural Pollution Abatement and Urban Sediment Pollution Abatement Law), sediment is defined as "solid material", both mineral and organic, in suspension and being transported, or moved from its site of origin by air, water, gravity, or ice and has come to rest on earth's surface either above or below sea level." Therefore, soil particles are not considered sediment until they are detached and are being transported or have come to rest on the earth's surface.

Soil erosion is the removal and loss of soil from the land by rainfall, flowing water or wind action. Sedimentation is the resulting build-up of this soil in the downstream areas and Lake Erie.

Soil erosion rates (per acre) in the Maumee River Basin are generally low, but because of the amount of land in agriculture, erosion from cropland poses a major pollution problem. The fine textured soils of the Maumee Basin are easily displaced and washed away by the rain. The sediment load in the Maumee River at high flow has been measured to exceed 150 thousand tons per day. The average annual sediment load from the Maumee River is 1.2 million tons per year, but it can accumulate to nearly 2 million tons per year.

There are numerous problems created by suspended and deposited sediment. These problems include:

- 1. Increased treatment costs of water supplies due to increased levels of suspended sediment. The taste and odor of the treated water can also be affected by these increased levels;
- 2. The reduced aesthetic quality of water for recreation purposes;
- 3. Reduced light penetration caused by turbidity which reduces photosynthesis thereby preventing aquatic plant growth, disrupting the food chain and impairing biological systems;
- 4. Decreased visibility in the water which affects the ability of fish to feed as well as create a safety hazard for boaters, swimmers, and water skiers; and
- 5. Provides a vehicle for the transport of phosphorus and other pollutants.
- 6. Cause species extirpations and impacts on biological communities.

Deposited sediment problems include:

- 1. Navigation problems in Toledo Harbor and the necessity to provide annual maintenance dredging of 1 million cubic yards per year.
- 2. Impaired biological systems due to covering of the bottom spawning and feeding areas of fish. In addition, deposited sediment reduces the productivity of many species of aquatic organisms which are food for fish.
- 3. Filled drainage ditches which require expensive ditch maintenance and environmentally destructive channelization and modification to restore usage.

The Lake Erie Wastewater Management Study was conducted by the U.S. Army Corps of Engineers pursuant to Section 108 of the Clean Water Act of 1972. The LEWMS used the Land Resources Information System (initially developed by TMACOG) to calculate existing Potential Gross Erosion for the Lake Erie Basin. The Maumee River Basin in its entirety was identified as having 2,596,736 acres of cropland which contributed 9,092,447

tons of potential gross erosion, or an average of 3.5 tons of soil loss to the acre under 1978 conditions.⁴⁰

The State of Ohio Phosphorus Reduction Strategy for Lake Erie (1985) divided the Lake Erie drainage area (Ohio portion only) into 34 hydrologic groups. Table 36 identifies 14 of these hydrologic groups that make up the Maumee River Basin in Ohio.³³ Table 34 shows that there was 3,322,095 total acres in the Ohio portion of the Maumee River Basin and the Lower Maumee River Area of Concern in 1980. These were estimated to yield 6,384,071 tons of sediment at the edge of the field or 1.9 tons/acre/year.

This difference between the Ohio Strategy and the LEWMS is likely the result of higher levels of erosion in the Indiana and Michigan portions of the basin and a difference in methodology. In either instance, both studies support the concept that there are many acres with low levels of erosion which add up to a substantial contribution of sediment to the streams and rivers of the Maumee River Basin.

These calculations of Potential Gross Erosion by the LEWMS and for the Ohio Phosphorus Strategy have been designed to develop a relationship between soil erosion on the croplands and the sediment that is actually transported to Lake Erie and its tributaries. The calculation of Potential Gross Erosion reflects the soil loss from the field. The transport of the soil particles may or may not continue for some distance until it actually arrives downstream. The sediment delivery ratio reflects the percentage of material that actually is transported to an area of deposition. The LEWMS calculated the sediment delivery ratio for the Maumee as 9.2%.⁴⁷ The Ohio Phosphorus Strategy calculated a delivery ratio of 13.7% for the Maumee.³³

BASIN NAME (Ohio Basins Only)	TOTAL AREA (ACRES)	1980 GROSS EROSION (TONS/YR)	1980 PHOS YIELD (MT/YR)
Ten Mile Creek (Ottawa River)	107,134	140,722	118
Maumee River Mainstem	181,444	235,881	185
Maumee River Mainstem	203,296	327,952	182
Maumee River Mainstem	308,683	461,697	290
Tiffin River	357,200	626,537	337
Auglaize River Mainstem	251,952	636,346	236
Little Auglaize River	261,142	680,900	316
Auglaize River Headwaters	249,105	571,666	275
Blanchard River	490,220	788,072	364
Ottawa River	233,700	515,773	256
Maumee River Mainstem	129,748	357,212	140
St. Mary's River	289,600	642,317	312
St. Joseph River	151,347	216,764	106
Lake Erie Direct (partial)*	107,517	182,232	111
TOTAL	3,322,095	6,384,071	3,234

TABLE 36 SEDIMENT AND PHOSPHORUS AFFECTING THE MAUMEE AOC

Includes 46% of Group 14 watersheds from the Ohio Phosphorus Strategy. This includes all of the drainage between Crane Creek and the Maumee River.

Source: State of Ohio Phosphorus reduction Strategy for Lake Erie (1985).

*

Phosphorus

The phosphorus associated with sediment, as well as the phosphorus from other sources such as urban runoff, combined sewer overflows and industrial and municipal discharges, has been identified as the principle limiting nutrient in the cultural eutrophication of Lake Erie. It is also responsible for eutrophic conditions in the Lower Maumee River, Maumee Bay and the tributaries of both.

Eutrophication is a natural aging process generally describing the fertility (mainly aquatic plant productivity) of lakes. Over time, a lake will become filled with sediment and organically derived material from streams draining its watershed and from atmospheric deposition. These processes occur naturally and will fill in a lake on a geologic time scale. However, man's activities within a drainage basin can alter the natural processes in a watershed and accelerate this (extinction) process. This latter situation is referred to as cultural eutrophication to distinguish it from the natural process of aging of a lake.

Cultural eutrophication is caused by the excessive loads of aquatic plant nutrients (usually phosphorus) to natural waters. These nutrients, in turn, can produce nuisance growths of algae and higher aquatic plants which interfere with man's use of the water. While some lakes are naturally eutrophic, in that they receive a sufficient supply of phosphorus and nutrients from other sources to produce nuisance growths, an increased nutrient load to a water body has most often been associated with an intensification of human activity in the drainage area surrounding the water body.

A major focus of the Lake Erie Wastewater Management Study was to assess the relative importance of point source and non-point source contributions of phosphorus and other pollutants. Their conclusion was that even after the major wastewater treatment plants had achieved the 1 mg/l standard for phosphorus, there would still be a need to reduce phosphorus contributions to Lake Erie from non-point sources by 47% in order to upgrade the Western and Central Basins of Lake Erie to a stable trophic condition. Such improvement would generally be associated with improved water quality in that the fertility levels would be moderated and nuisance growths would be eliminated.

The Water Quality Agreement of 1983 between the United States and Canada includes Annex III which establishes a phosphorus loading target for Lake Erie of 11,000 metric tons per year. It also called upon the United States and Canada to prepare strategies to achieve this load reduction. The United States Task Force Plans for Phosphorus Load Reductions to Lake Erie, Lake Ontario, and Saginaw Bay establishes a total Lake Erie reduction of 1700 metric tons of which Ohio is responsible for 1,390 metric tons.

Ohio has prepared the *Phosphorus Reduction Strategy for Lake Erie* which sets out Ohio's plan to reduce 1390 metric tons of phosphorus. Agricultural sources are considered to contribute about 64% of the total phosphorus load to the Lake. Therefore, they have been assigned 64% of the reduction, or 890 metric tons/year of phosphorus. The strategy identifies 112 watersheds in the Lake Erie Basin that are to receive priority treatment with conservation tillage. To meet the required reductions, conservation tillage practices are to be adopted on 50% of these acres.

The Maumee River Basin contains 57 of these watersheds which are divided into watershed groups according to the Planning and Engineering Data Management system for Ohio (PEMSO) developed by OEPA (Table 37). These watersheds contain 1,095,979 acres of cropland which contribute 1,197 metric tons of phosphorus. The strategy proposed that this contribution would be reduced by 447 metric tons. This is about half of the required Ohio phosphorus reduction from agriculture.

Achieving this reduction will improve water quality in the lower Maumee River and Maumee Bay as well as Lake Erie. However, most of this problem originates upstream from the AOC and will have to be addressed in these upstream areas.

PEMSO	CROPLAND	AGRICULTURAL	PHOSPHORUS
WATERSHED Group #	Acres	PHOSPHORUS M Tons	REDUCTION M Tons
1. Ten Mile Creek	51,364	74	26
2. Maumee River Mainstem	90,468	116	41
4. Maumee River Mainstem	56,005	41	20
5. Tiffin River	159,418	132	63
6. Auglaize River Mainstem	78,059	73	28
7. Little Auglaize River	143,374	146	54
8. Auglaize River Headwaters	140,398	139	55
10. Blanchard River	74,189	161	42
11. Maumee River Mainstem	46,549	55	21
12. St. Mary's River	192,277	181	69
14. Lake Erie Direct (Partial)	63,878	78	_28
TOTAL	1,095,979	1,197	447

TABLE 37 PROPOSED PHOSPHORUS REDUCTIONS FOR PRIORITY WATERSHEDS BY PEMSO WATERSHED GROUP Maumee River Basin

Source: State of Ohio Phosphorus Reduction Strategy for Lake Erie (1985)

Nitrogen

Nitrogen is an essential plant nutrient and is applied to cropland as a fertilizer. Nitrogen is also a nutrient for aquatic plants although it is less of a limiting factor than phosphorus, and therefore, has not received the same level of attention in water quality control strategies. The concentrations of nitrate nitrogen increase during runoff events. However, nitrates are soluble and are carried to the waterway with the runoff rather than adsorbed to sediment as is phosphorus. Tile effluent often carries nitrates to the waterways.

Dr. David Baker of Heidelberg College reports that the nitrogen export rate for the Maumee River Basin is 19 kg/hectare/year (17.1 lb./acre/year) and that this is much higher than national averages. This represents an amount equal to about 50% of the amount of fertilizers applied by farmers in the basin each year and represents a significant loss to these farmers.

Table 35 shows that the annual load of nitrate/nitrite nitrogen in recent years has ranged from 24,100 metric tons to 35,450 metric tons. The 1982 water year which has been selected as a typical or average year for the Great Lakes had an annual load 28,400 metric tons of nitrate/nitrite nitrogen.

Nitrate nitrogen levels in the Great Lakes have been increasing. Lake Erie has experienced an increase of 7.95 ppb/year over the period of 1970 to 1986. The International Joint Commission has expressed concern about this increase and has recommended that research be performed to identify the effects of these increases.

Nitrate concentrations have exceeded the 10 mg/l standard on the Maumee River. This usually occurs during the spring when fertilizer application and runoff events are likely.

The standard was exceeded 92% of the time during May, June or July. Peak concentration for the period of time ranged from 10.3 to 12.3 mg/l. Public health concerns about nitrate nitrogen have constituted the major effect of these events. The solubility of nitrate nitrogen adds to the public health concerns about nitrates because they are difficult to remove through the standard drinking water treatment process. As a result, drinking water alerts have been issued for communities that utilize the Maumee River for their drinking supply.

<u>Pesticides</u>

A recent report by the Water Quality Laboratory of Heidelberg College entitled Lake Erie Agro-Ecosystem Program: Sediment, Nutrient, and Pesticide Export Studies (prepared for the Great Lakes National Program Office) is the most thorough review of pesticide loads in the Maumee River. A summary of the situation as reported in this document follows.

During spring and early summer, the concentrations of many currently used pesticides increase in Lake Erie Tributaries. In general, the concentrations of herbicides are much higher than the concentration of insecticides, and concentrations of both are generally proportional to their usage. The herbicide concentrations in these rivers appear to be higher than in many other rivers draining cropland. The effects of these herbicides on ambient water quality remain uncertain. Because of the low acute toxicity, the relatively low persistence and the insignificant bioaccumulation of most herbicides, direct toxic effects on animal life in streams and rivers appear unlikely. However, the concentrations of herbicides observed in these streams are within the range where effects on both algal and higher aquatic plant communities could be expected. Such effects may already be manifest in the existing algal and rooted aquatic plant communities in this region's streams and rivers, and within their associated wetlands and bays. Changes in these plant communities could affect the fish and invertebrate communities in streams and rivers. Also the herbicide concentrations could possibly induce behavioral responses in animals that could be detrimental to these communities.

Most of the pesticides present in streams occur primarily in the dissolved state rather than attached to the sediments. Consequently, the removal of sediments at drinking water treatment plants does not remove most pesticides. Since other aspects of conventional water treatment, such as chlorination, do not remove or alter these compounds, finished tap water has very similar concentrations of these pesticides to those found in the raw water. At present, the U.S. Environmental Protection Agency has not established maximum contaminant levels in drinking water for any of the herbicides monitored in these studies, even though this set of herbicides makes up about 85% by weight of the herbicides used in Ohio. Standards for several of the major herbicides should be set by the federal government in the near future.

For the present several states are establishing their own drinking water standards and the National Agricultural Chemicals Association has also suggested interim health guidance levels for some compounds (NACA 1985). The concentrations of herbicides in Lake Erie tributaries do exceed some of these guidelines, for relatively short periods of maximum concentration. Activated carbon can be used to remove these compounds at water treatment plants and research is underway to evaluate other possible treatment techniques.

Table 38 contains information about the concentrations of pesticides in the Maumee River at Waterville (at the upstream end of the Area of Concern) and their extrapolated loads to the lower Maumee River. The accuracy of the load estimates is dependent on the frequency and representiveness of the pesticide samples and the flow data. Infrequent pesticide samples are more often the limiting factor than is inadequate flow data.

	TABLE	38		
PESTICIDE	CONCENTRATIONS	AND	EXTRAPOLATED LO	ADS

PESTICIDE	TRADE	198	33	198	34	198	5
	NAME	Conc. ppb	Load kg	Conc. ppb	Load kg	Conc. ppb	Load kg
Siamazine	Princep	0	0	0.185	290.95	0.165	67.33
Carbofuran Atrazine	Furadan Aatrex	0.175 1.751	245.95 2476.11	0.188 2.975	509.38 4807.74	0.046 1.902	27.41 727.89
Terbufos Fonofos	Counter Dyfonate	0.001 0	2.35	0.002	.53	0.001 0	0.34 0.53
Metribuzin	Sencor, Lexone	0.443	700.06	0.448	1816.42	0.254	125.68
Alachlor Linuron	Lasso	1.046 0.036	2053.38 46.86	1.756 0.040	5251.98 54.96	0.472 0.013	264.131 19.81
Metolachlor Cyanazine Penoxalin	Dual Bladex	1.308 0.662	1763.06 1160.87 59.91	1.574 1.146	3056.82 2888.98 118.51	1.316 0.322	618.73 137.28 0

Concentration is the "Time Weighted Mean Concentration" and is calculated for the time period of April 15 to August 15.

Source: Lake Erie Agro-Ecosystem Program: Sediment, Nutrient, and Pesticide Export Studies⁴⁰

ŧ

OPEN WATER DISPOSAL OF DREDGED MATERIAL

The Corps of Engineers (COE) annually conducts maintenance dredging of the Toledo Harbor in order to maintain the depth of the shipping channel. This dredging produces between 800,000 to 1,000,000 cubic yards of dredged material annually. In recent years (since 1970s), about 90 to 95% of the material was placed in one of the confined disposal facilities (CDF) at the mouth of Maumee Bay. In September 1984, the COE proposed to change operations to open lake dispose of about 60% of the dredged material from the Maumee Bay portion of the channel (and upper 2 miles of river channel) due to cleaner sampling. The remainder of the more polluted material was to be placed in the CDF.

US EPA found that portions of the material were suitable for open lake disposal with the following stipulation:

"Potentially adverse impacts of open-water disposal should be minimized by locating the open-water disposal sites in areas where the sediment will remain in-place and where biological productivity is relatively low."⁴⁹

Ohio EPA has provided annual Section 401 Water Quality Certifications (required for dumping operations) with special stipulations. In 1985 and 1986 the COE was required by Ohio EPA to conduct monitoring operations and the Toledo-Lucas County Port Authority and the City of Toledo were to explore alternatives for the reuse and or disposal of the material other than open lake disposal. In 1987, the annual 401 certification also included the following stipulations:

The Ohio EPA intends to impose the following conditions on any future 401 Certifications to dredge the federal navigation channel at Toledo harbor from lake mile 2 outward over the next four years. These conditions will be imposed provided the lake channel sediments remain classified by USEPA as suitable for open lake disposal.

1988 - The Corps shall open lake dispose an amount not to exceed 90% of the material dredged from the lake channel. The Toledo-Lucas County Port Authority and the City of Toledo are responsible for identifying reuse alternatives for at least 10% of the dredged material. This volume shall either be placed in a confined disposal facility, with the commitment that an equal amount be removed from a confined disposal facility prior to 1989 lake channel dredging, or used in a (direct) reuse project.

1989 - Same as 1988 except that the open lake disposal is restricted to 70% of the material and 30% is to be subjected to reuse alternatives.

1990 - Same as 1988 except that open lake disposal is restricted to 50% of the material and 50% is to be reused.

No open lake disposal of dredged material will take place after 1991. The Toledo-Lucas County Port Authority and the City of Toledo are responsible for identifying reuse alternatives for 100% of the dredged material. This volume shall either be placed in a confined disposal facility, with the commitment that an equal amount be removed from a confined disposal facility prior to the following year's lake channel dredging, or used in a direct reuse project. 50

Differences of Opinion

There are several effects of open water disposal that have or may have negative impacts on the Area of Concern. These effects have been described and documented by various sources, however, there are still considerable differences in opinion over the extent of the impacts. Therefore, COE comments on the problems summarized below have been included.

COE Comment: Open lake disposal is considered to be environmentally suitable for disposal at the present disposal site by USEPA. Furthermore, the most recent and most specific studies and testing indicates that overall there may be no measurable negative impacts due to lake disposal. It even seems likely that lake disposal could have beneficial effects related to covering polluted bottom areas and in providing better contoured underwater habitat for fish.

Local Comment: The material does not stay at the disposal site but is dispersed by the currents and wave action. The current open lake dump site was previously used as a part of a 155 acre site one which material was dumped. The COE reports that 3,840,000 cubic yards were dumped on the site from 1965 to 1975. When the site was put back into use in 1985, water depths ranged from 20 - 24 feet which were very similar to the area surrounding the dump site. Had the 3,840,000 cubic yards that were placed on the site remained, then it would have formed a column rising 15.5 feet off the bottom and would result in water depths that averaged about 7 feet. Since this is not the case, and the material is gone, it is evident that it erodes away over a relatively short period of time.⁵¹

COE Comment: Soundings clearly indicate that material dumped from 1965 - 1975 is basically still there. The dump site depths are not similar to the surrounding bottom (see attached sketch). Calculations of depths (above) are in error due to an error in area (640 acres vs. 155 acres). Several years of capacity remain at the present site.

Local Comment: Material from the Lake portion of the shipping channel is not similar in physical composition to the lake bottom surrounding the dump site: more silt (46% in dredged material compared to 27% in lake sediments near the disposal site); more clay (29% to 13% in lake sediments); and much less sand (25% in dredged material and 69% in lake bottom sediment). The dredged material is also higher in phosphorus.⁵² Therefore, the erosion and resuspension of the dredged materials resulting in the bottom sediments of the surrounding areas to be covered with lower quality dredged material.

COE Comment: The physical characteristics of dredge material varies somewhat from area to area and depending on how deep the dredge is dredging. The bottom of the Bay is certainly similar in some aspects to the dredge material because most, if not all, of the material in the Bay originally came from the same upland sources of the Maumee River. Both dredge and bottom material have also been subject to much of the same pollutant sources. Thus it seems more correct to say that both are similar than not similar overall.

SUSPENDED PARTICULATES / TURBIDITY

Local Comment: During the dumping operations, a turbidity plume is created that is persistent for the duration of dumping operations and extends well beyond the one square mile of the dump site. This turbidity plume has been observed by numerous individuals and has been extensively photographed. This corresponds with the fact that dissolved solids violated water quality standards during dumping operations. 53

COE Comment: Turbidity plumes need further study as to how much material is transported or suspended. Even a trace of material may be visible and the Corps position is that practically all the material goes immediately to the bottom. Remaining quantities at the disposal site support this.

Local Comment: Laboratory tests have shown that 24% of the material remains in suspension after 24 hours.⁵⁴ A 1972 study has shown that the current moving across the Western Basin of Lake Erie will move 0.3 feet/second.⁵⁵ Therefore, the material could move 25920 feet or 4.9 miles in 24 hours. Herdendorf has shown the average velocity of Detroit River water flow in western Lake Erie is approximately 0.5 feet/second.⁵⁶ This also demonstrates that the material can be spread around the Western Basin.

COE Comment: Hopper dredge disposal as done in the Bay with a split-hull dredge does not leave the amounts suspended as with an agitated laboratory sample. The dredge load "slides" to the bottom essentially in bulk. Most, if not essentially all, of the material is still in place after 20 years in site #2 so actual resuspension after 24 hours appears to be drastically lower than the 24% from lab testing. The remaining material in site #2 also undermines the conjecture that substantial amounts of resuspended material are transported for miles around the Bay. Survey lines one-quarter mile from site #2 also showed no change from 1985 to 1987 thus indicating no detectable movement of material.

WATER QUALITY

Local Comment: Pursuant to the provisions of the Section 401 Water Quality Certification issued by Ohio EPA, the COE conducted monitoring of water quality conditions on the dump site and in surrounding water in both 1985 and in 1986. A change in pH that violated Lake Erie Water Quality Standards was reported for 1985.⁵⁷ The 1986 monitoring program detected several violations of Lake Erie Water Quality Standards both on and off the dump site, including copper, cadmium, iron, mercury, and dissolved solids.⁵³ This was acknowledged by COE.⁵⁸ The 1986 monitoring program has also shown several impacts on water quality conditions around and off the dump site.^{59, 60} In addition, an early algal bloom was identified by Robert Stevenson of the Toledo Division of Water. This was the earliest recorded at the Toledo Water Intake since 1976. He attributes this to the dumping of dredged material.⁶⁰

COE Comment: The Corps interpretation of the monitoring of 1985 and 1986 was that there were no violations that could be attributed to the disposal operations. One violation noted above was from sampling done before disposal started. Other apparent violations were not true violations because simultaneous remote reference results indicated that conditions were no worse at the disposal site than at the remote reference sites. Algae blooms are common to Maumee Bay and it is only conjecture to attribute these to dredge disposal miles away. A Corps bioassay report on the Bay is to be complete in April 1988. This hopefully should clarify some environmental misunderstandings.

Local Comment: The effect of the open water disposal on phosphorus loads has also been a topic of study. Bioavailable phosphorus concentrations in the Lake portion of the shipping channel are higher than those of the surrounding Lake according to work performed by DePinto.⁵⁴ Annual loading of bioavailable phosphorus is 101 metric tons/year or 28% of the average annual Maumee River load.⁵²

COE Comments: Annual loadings of bioavailable phosphorous is .4 to .6% not 28% as reported above (per CENCB-ED from DePinto research).

EFFECT ON MUNICIPAL WATER SUPPLIES

Local Comment: City of Toledo has repeatedly stated that the current dump site is within an area where current will carry the material to the water intake and requested that the dump site be moved further to the East and North. Stevenson has stated that water from the dump site does arrive at the water intake.⁶⁰ This conforms to the prediction of movement of the material over a 24 hour period that was described above. Movement of the material may carry toxics or other organic chemicals whose limits are below the level of sensitivity of testing performed by the COE.⁶¹ **COE** Comment: As stated previously this is largely conjecture, and data needs to be developed on resuspension and its effect on phosphorous levels.

CDF Alternatives

An economically feasible and environmentally acceptable site or method for future disposal of dredged materials that are unacceptable for open-lake disposal will be required within two to five years. Within this time period, the existing active 242-acre CDF will be filled to capacity.

Disposal alternatives that have been mentioned for consideration include: upland use of the dredged material at Maumee Bay State Park, Buckeye Basin Greenbelt Parkway, and various old landfill sites; construction of a CDF along the east side of Woodtick Peninsula to prevent the continued erosion of the peninsula and provide some protection to the marshes, marinas, and other lands west of the peninsula; increasing the height of the dike around the active 242-acre CDF or around the old Island 18 (Grassy Island) CDF to increase disposal capacity; or constructing a new CDF at one of the four potential alternative locations adjacent to the navigation channel.

The preferred action identified by the COE in the Draft Environmental Impact Statement involves the construction of a new lake shore CDF (Alternative 1C) bounded on the northeast and southeast sides by the existing 242-acre CDF, on the south side by the Port Authority CDF, and on the west and northwest sides by a 4,265 foot long dike to be built to a top elevation of 23.5 feet above the LWD elevation of 568.6 feet (IGLD, 1955). The new CDF would occupy about 176 acres of Maumee Bay and would provide about 162 acres of disposal area.

As long as the water quality of the lower Maumee River is significantly degraded, rapid mixing of river and bay waters appears to be important in minimizing the zone of influence of the river water in Maumee Bay. It is expected that water quality in the lower Maumee River will continue to improve, but the process will be a very gradual one. A new CDF at three of the sites considered, or even an expansion of Grassy Island to the northwest would result in reduced mixing in the "shadow zone" of the CDF. Even the construction of a CDF at the preferred site near the existing active CDF will have some impact on mixing by eliminating the 176-acre embayment area as a mixing zone and shifting the mixing zone to the north of the site.

The impacts of this construction on mixing might be greater if it were not for two ameliorating factors. First, much of the river flow does not pass by the preferred site due to an average withdrawal rate of about 1149 cfs by the Toledo Edison Bayshore Power Plant, the mouth of whose intake canal is located at the southwest corner of the proposed CDF site. Comparing this average withdrawal rate to the discharge frequency data for the Maumee River at Waterville indicates that for the period of June through August, the river flow exceeds the power plant withdrawal rate less than 50 percent of the time. Thus, for perhaps half of the time during the summer months, water may be moving from the bay across the face of the site to the power plant intake, rather than from the river into the bay area. The second ameliorating influence is the additional water mass mixing produced by winds and seiches. The resulting movement of water masses can cause bay water to move several miles into the lower Maumee River. Thus, even when river flow rates substantially exceed the withdrawal rate of the power plant, the site will often be under the influence of bay water due to a wind or seiche induced movement of bay water up into the Maumee River estuary area.

The preferred site was selected primarily due to the fact that the amount of diking required, and thus the cost of construction, would be much lower than at any other location in Maumee Bay. Even the most efficient of designs for a 176-acre CDF at another location, such as an extended semi-circular CDF expansion of the northwest side of Grassy Island, would require a dike approximately 60 percent longer than the one proposed. Only the most serious of water quality impacts or the elimination of the most unique of fish and wild-life habitats might have precluded the selection of this site for construction of a new CDF. The water quality impacts of this alternative should be relatively minor, and the fish and wildlife resources of the site are significant but not unique.

Environmental Conditions

In 1986, the Ohio EPA conducted an extensive biological and water quality survey of the lower Maumee River, with some additional fisheries surveys in Maumee Bay. The data are presently being analyzed by the agency. A preliminary data set of surface and bottom DO readings were taken on 8 to 10 dates between July 14 and October 8, 1986. The combined mean for River Mile 1.0 is about 5.1 ppm (range 3.3 to 6.3 ppm), for River Mile 0.5 about 5.4 ppm (range 3.6 to 7.3 ppm), and for the mouth near Presque Isle about 5.5 ppm (range 3.1 to 7.5 ppm). These values are somewhat higher than values from earlier studies indicating that some improvement in water quality has occurred between the early 1970's and the mid-1980's.

While Maumee Bay has historically been influenced by the degraded water quality of the lower river, and this influence has been increased by the construction of the 242-acre CDF, the aquatic community of the site and of the rest of Maumee Bay is not a depauperate assemblage. The application of the pollution classification of Wright (1955)⁰² to benthic invertebrate data indicates that the area southeast of the navigation channel is lightly polluted, the navigation channel and the area northwest of the channel is moderately polluted, and the area near the Toledo Sewage Treatment Plant discharge is heavily polluted (see Figure 6).

Just as the water quality in the bay has apparently improved and will continue to improve, the sediment quality also appears to have improved significantly. A prime example would be that the dredged sediments from Lake Mile 2 to Lake Mile 8 are now considered suitable for open-lake disposal. Another indication of this change is the change in the benthic community of the bay. In 1930, 1961, and 1982, a series of stations throughout the western end of the western basin of Lake Erie were sampled for benthic macrofauna. From 1930 to 1961, the stations in and near Maumee Bay either remained at high level of pollution or became much more polluted, as evidenced by the number of oligochaets per square mile and by loss of pollution intolerant organisms such as *Hexagenia* mayfly nymphs.

By 1982, the trend had dramatically reversed itself, at least concerning the numbers of oligochaets. The 1930 survey results are presented in Wright (1955)⁶² and the 1961 survey results in Carr and Hiltunen (1965).⁶³ The 1982 data Manny, Hiltunen and Judd (unpublished)⁶⁴ are preliminary, have not yet been statistically analyzed, and are subject to some modification. Note that while the density of oligochaets has decreased at stations in and near Maumee Bay, the densities at most stations further offshore have remained relatively the same or increased.

CDF Impact on Fish Habitat

In spite of obvious water quality problems in the lower Maumee River and in Maumee Bay, these areas serve as valuable nursery habitat and perhaps spawning habitat for white bass and other sport and commercial species such as walleye, yellow perch, freshwater drum, and channel catfish. Mizera (1981) found the average density of larval white bass in Maumee Bay was more than five times greater than the average density east of the bay and more than seven times greater than the average density north of the bay.⁰⁵ A similar pattern was found for freshwater drum. For larval walleye, the density found in Maumee Bay was slightly greater than that north of the bay but considerably less than that east of the bay. The density of yellow perch larvae in the bay was high but was slightly below that of the other two areas. Heniken (1977) also found somewhat similar patterns of larval distributions in his summarization of data from 1975 and 1976 for the Ohio portion of the western basin.⁰⁰

Based on the larval surveys of 1975 and 1976, Heniken (1977)⁶⁶ indicates that gizzard shad production in the Ohio portion of the western basin appears to be centered mainly in Maumee Bay and that concentrations often exceeded 1,000 per 100 square mile. Gizzard shad are the most important forage species for walleye in the western basin of Lake Erie.

The data show that the preferred CDF site presently consists of a diversity of valuable aquatic habitats and that without the implementation of the proposed project, the value of these habitats would continue to increase with the improvement of water quality in the lower Maumee River. The value of these resources is sufficient to qualify their loss as significant, and that loss should be appropriately mitigated.

The propose CDF will neither take on the appearance of an island nor add diversity to the area. It will reduce the diversity that presently exists in the CDF peninsula by reducing the shoreline length of the peninsula and eliminating the varied aquatic habitats in the existing 176-acre embayment. It is unlikely that the short-term increased utilization of the CDF area by water birds during the filling phase will outweigh the long-term loss of use of the existing 176 acres of Maumee Bay by herons, egrets, and particularly by diving ducks.

The proposed CDF is but one in a series of CDFs that have been constructed in Maumee Bay and the lower Maumee River. With the construction of the proposed CDF, almost 5 percent of the surface area of Maumee Bay will be occupied by CDFs. The cumulative impacts to fisheries have been significant and there has been no mitigation of fish habitat losses resulting from the construction of any of these existing CDFs. If a CDF is constructed at the preferred site, a combination of in-kind and out-of-kind mitigation could partially offset fish habitat losses and such mitigation should be made a part of the project.

URBAN RUNOFF

Urban runoff encompasses combined sewer overflows, as well as a significant non-point source of pollution. Any type of street debris that is small and light enough to be washed away by a heavy rain will end up in Lake Erie in some form, sooner or later. Contaminants in urban runoff cover a broad range, but typically include pollutants washed out of the air by rainfall, animal droppings, construction sediment, leaves, litter, salt, and oil. Some of these occur naturally; the pollution problem results from the high rate of runoff from urban areas.

A number of studies on the problems and possible solutions to urban runoff pollution have been conducted. Subjects investigated include urban soil sediment, and street cleaning. Urban runoff is higher in suspended solids than sanitary sewage; the BOD is lower than in sewage, but not low enough for runoff to be considered clean water.

In developed urban areas, rainwater runs off of roof tops, sidewalks, and streets, and becomes polluted as it dissolves or washes away debris. Any debris on the street or sidewalk sooner or later ends up in a nearby stream. There are two ways to reduce urban runoff pollution from developed areas. Collect the water and treat it, or reduce the sources of pollutants by keeping debris from being washed into storm sewers to start with. This is a matter of urban housekeeping.

In newly developing areas, there are special problems related to sediment and debris from construction sites. While of limited duration, the impact of large quantities of sediment can be substantial.

Urban runoff is a significant source of nutrients: it is estimated³² to contribute 0.8 lb of available phosphorus per urbanized acre per year. This estimate was based on runoff samples taken from urban areas in the Great Lakes region. On the basis of this loading, it was estimated that for the Swan Creek watershed⁴² phosphorus loadings from urban areas total roughly 13% of agricultural runoff. This would make urban runoff the second largest source of phosphorus in the sub-basin. Applying the 0.8 pound of available phosphorus per urbanized acre per year, a total of 3,922 pounds or 21 tons, is the estimated phosphorus loadings per year for the RAP area. These calculated loadings are displayed in Table 40 by municipality and by TMACOG watershed.

		TABLE 3	9	
ESTIMATED	URBAN	RUNOFF	PHOSPHORUS	LOADINGS

	TOTAL	TOTAL	URBAN	URBAN	LB.	
MUNICIPALITY	HECTARES	ACRES	HECTARES	ACRES	PHOSPHORUS	TMACOG WATERSHED(S)
LUCAS COUNTY						
Berkey	1,052	2,599	52	128	103	1
Harbor View	4	10	4	10	8	28
Holland	112	277		208	166	····· · · · · · · · · · · · · · · · ·
Maumee	2,536	6,266	1,236	3,054	2,443	10, 41, 47, 79
Oregon	7,432	18,364	1,776	4,388	3,511	28, 29
Ottawa Hills	448	1,107	308	761	609	6
Sylvania	1,464	3,618	808	1,997	1,597	3
Toledo	21,704	53,631	14,840	36,670	29,336	2, 6, 10,13,14,15,22,23,25,26,30
Waterville	568	1,404	232	573	459	41, 43, 44
Whitehouse	792	1,957	200	494	395	39, 40
TOTAL	36,112	89,233	19,540	48,283	38,627	
WOOD COUNTY						
Haskins	408	1,008	64	158	127	122
Luckey	160	395	80	198	158	83
Millbury	248	613	72	178	142	115
Northwood	2,052	5,070	496	1,226	980	. 43
Perrysburg	1,076	2,659	676	1,670	1,336	121, 122
Rossford	728	1,799	432	1,067	854	115
Walbridge	264	652	164	405	324	28, 29, 32
TOTAL	4,936	12,197	1,984	4,902	3,922	97 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199
TOTAL FOR AREA	41,048	101,430	21,524	53,186	- 21	
	Acres	Acres	Acres	Acres	Tons P/Yr	

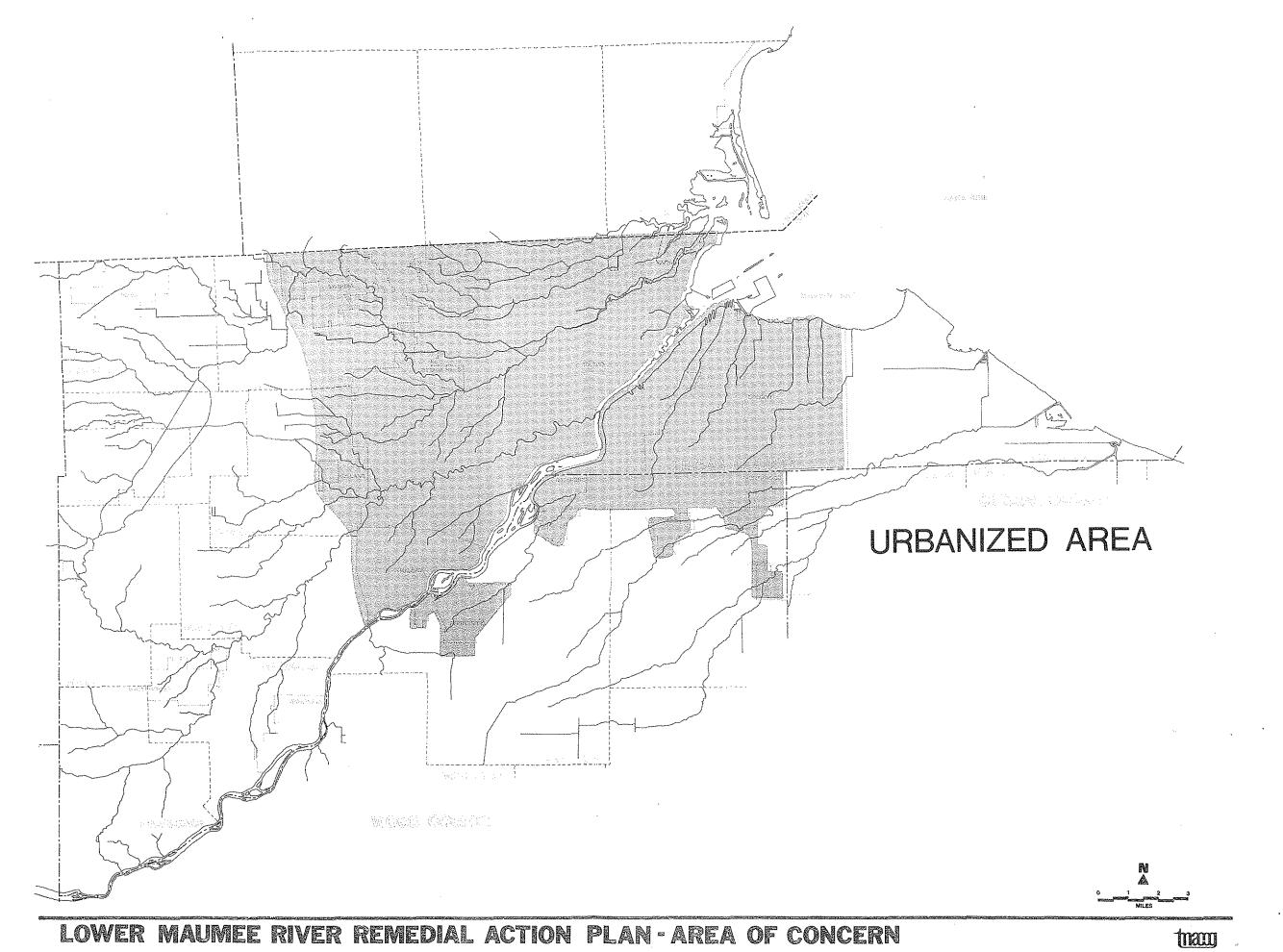
Apart from the estimate that urban runoff yields 0.8 pound of Phosphorus per acre per year to Lake Erie, no other monitoring or sampling data specifically aimed at urban runoff is known in the Maumee RAP Area.

Salt for deicing streets is a potential source of water pollution from urban runoff. If present in high enough concentrations, salt can be toxic to aquatic life. No data is available to indicate whether deicing salt causes problems in the Toledo area.

Present Urban Runoff Control Practices

Typically, there are no urban runoff control practices in use in the older, developed urban areas. However, the City of Toledo and Lucas County enforce site drainage design regulations for new development. These regulations limit the allowable discharge rate of stormwater to a storm sewer. Any flow above the rate at which runoff occurred from a 25 year storm before development must be retained.

Retention/detention basins, and rooftop and parking lot stormwater storage are frequently used, as are swales and oversized ditches with restricted outlets. Design standards call for the use of passive stormwater control facilities that will work without having to be operated; e.g., the outlet from a retention basin is controlled by a small outlet to restrict flow, rather than a valve. Also, a valve can be easily removed by the owner, defeating the purpose of the basin.


- There are some problems and shortcomings with the present regulations. They are not stringently enforced. Regulation may be no more than paying a fee for a permit.
- Training of inspection personnel is a problem. Better awareness of the purpose of these stormwater facilities, especially relating to water pollution control, would be beneficial.
- There is no enforcement for proper maintenance of stormwater control facilities.

Proposed NPDES Permit Requirements for Storm Sewers

US EPA⁶⁷ has been developing NPDES requirements for separate storm sewer outfalls over the past several years. The regulations developed required communities to classify storm sewers as "Group I" or "Group II," depending on the type of area drained by the sewer, and the likelihood of contaminated runoff. The filing deadline for permit applications was set at December 31, 1987. The area affected by the regulation was defined as "the most current criteria established by the Bureau of Census." A map showing the areas classified as "urbanized" by the 1980 Census⁰⁸ is included as Figure 49. However, a lawsuit was filed, and in December, 1987, a Court of Appeals threw out the regulation (CFR 2/12/88⁰⁷). The issue of how to regulate stormwater discharges has been remanded to US EPA for further rule making.

EPA intends to issue new regulations codifying storm water provisions found in sections 401, 405, and 503 of the Clean Water Act of 1987 in the near future. Details and proposed rules will published for public comment in the *Federal Register*.

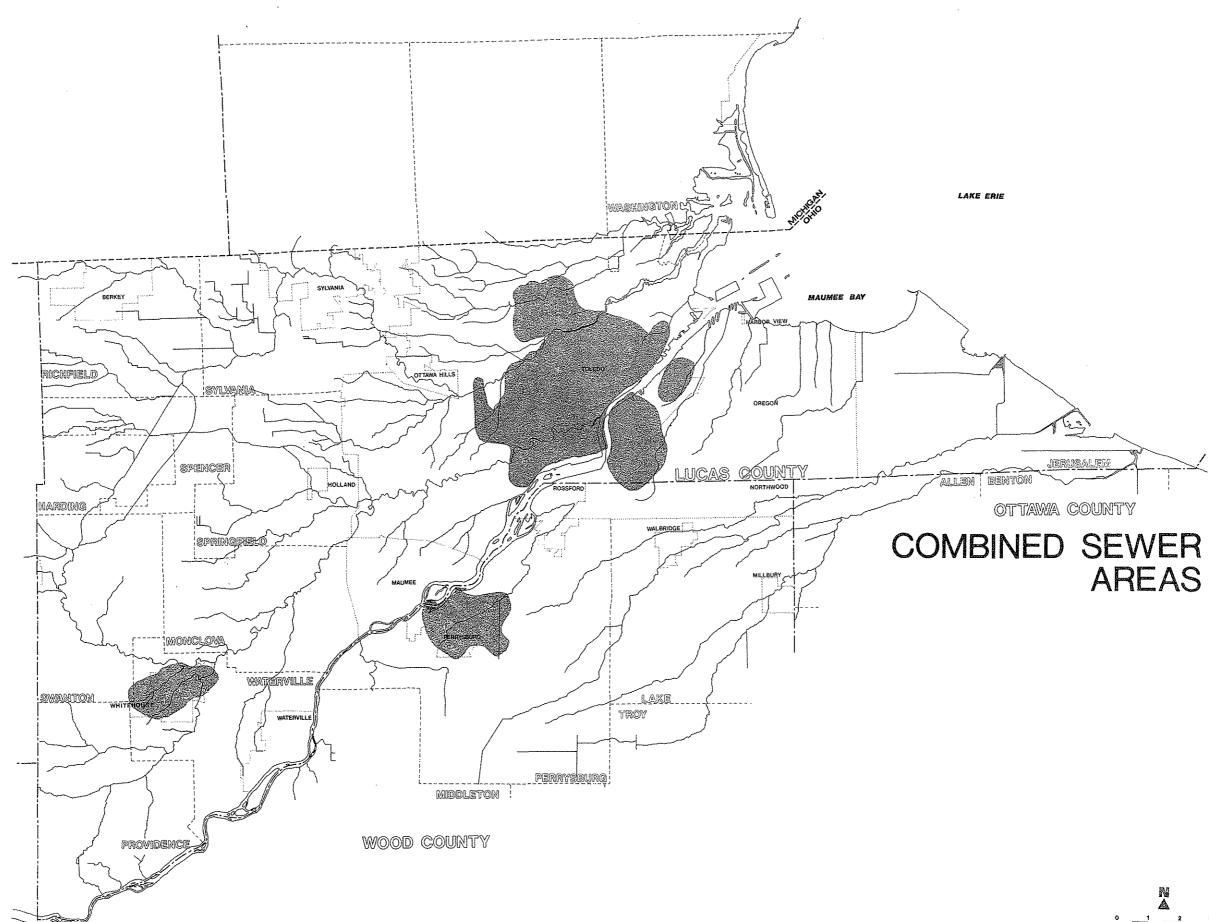
. . .

Combined Sewer Overflows

Storm runoff causes a serious pollution problem resulting from combined sewer overflows, or "CSOs." Almost every town has areas where sewage and runoff use the same, or "combined" sewers. During a storm, runoff overloads these sewers, and causes a mixture of rainwater and raw sewage to overflow into the nearest creek.

This is a serious problem, not only because of the pollution it causes, but also because it's difficult and expensive to correct. During a heavy rain, the amount of storm water flowing through the sewers is likely to be much greater than the amount of sewage.

Designing a sewage treatment plant for this peak flow rate would be expensive, and would be significantly oversized for normal flow rates. But if this peak flow surge is allowed to go through the treatment plant, it can upset the treatment processes and keep the plant from doing a good job of treating sewage for days or weeks afterward.


The best way to eliminate pollution from CSOs, from a purely environmental standpoint, is to build a separate system of storm sewers. It is standard practice to do so in new developments, and has been for many years, but in the older parts of every town, combined sewers are the rule. Separating the sewers for even a small town could cost in the millions of dollars and would require digging up the streets. These are two big reasons why separate sewer systems are rarely added to existing neighborhoods.

US EPA does not award construction grants for CSO abatement projects, but allows individual states the alternative of setting aside up to 20% of total grant money statewide for otherwise nonfundable projects. In Ohio, 5% is earmarked for CSOs. The City of Toledo has been a major benefactor of this program, receiving a grant of \$6.3 million for Phases I and II or its CSO abatement project.

The municipalities in the Maumee Basin Area of Concern which have CSOs are Toledo, Maumee, Northwood, Perrysburg, and Whitehouse. Areas served by combined sewer systems are shown in Figure 50. Listings of these overflow points are given in Tables 41 through 45. In Toledo, 8902 acres are tributary to the CSO regulators;^{25,09,70} in Maumee, 456 acres;⁷¹ and in Perrysburg, 882 acres.⁷¹

Most of Northwood is served by separate sanitary sewers. The western portion of the city is served by combined sewers. The Northwood Facilities Plan⁷² notes: Wet weather from the combined sewer, which bypasses the existing intercepting manhole at Andrus Road and Sheffield Place, discharges into the Maumee River through a storm sewer of the City of Toledo. The two discharge points (overflow from Regulator No. 9 and the storm sewer) are located approximately 300 feet apart.

LOWER MAUMEE RIVER REMEDIAL ACTION PLAN-AREA OF CONCERN

COMBINED SEWER OVERFLOW AREAS

Toledo Combined Sewer Overflows

Toledo's combined sewer system presently has 34 overflow points to the Maumee River, the Ottawa River, and Swan Creek. The problems associated with these overflows are well-known, and have been documented in past studies.^{70,73} They severely degrade water quality, and are aesthetically offensive.

Combined sewer overflows are controlled by float-operated gates called *regulators*. They are designed to direct all sewage flow to the treatment plant during normal conditions. They should bypass only when the sewer system is overloaded with stormwater. However, regulators can experience problems which cause them to bypass during dry weather.

Toledo has experienced problems with river water entering the sanitary sewer system through the regulators. This phenomenon occurred when northeast winds caused the river levels to rise. In 1987, Toledo began installing tide gates on the regulators. Most are now in place. It is too early to tell whether the new tide gates will show a significant improvement in water quality.

Toledo's regulators experience other problems as well.⁷³ One is that most of them are below Lake Erie's mean annual flood elevation. Another is debris, which causes the regulator gate to stick in the open position, and continue bypassing when it shouldn't. The regulators can experience problems from collapse of pipelines and other mechanical failures. The regulators are inspected an average of about 12-15 times per year. Also, telemetering equipment records the status of each regulator, and how many hours each day the discharge gate is open.

Toledo plans a 9-phase CSO abatement program for these areas, to be completed in 1996. Phases 1 and 2 will be a downtown combined sewage tunnel for storing surge storm flows. The downtown tunnel will catch a 0.2" first flush, which is estimated to contain 85% of the pollution. Similar smaller tunnels will be built along Swan Creek as phases 3 and 4, will be designed to catch a first flush of 0.55".

Other rehabilitative work is included in the CSO abatement program. The tide gates are now in place on nearly all of the regulators. Repairs and/or improvements will be made to a number of the regulators. Some sewer separation will also be done. Once the present 9phase program is complete, Toledo plans to reevaluate the situation to determine whether improvements are needed for the remaining CSO areas along the Maumee.

A listing of Toledo's CSO points is given in Table 41, and a summary of regulator bypasses for October 1986-February 1987⁷³ is presented in Table 42.

TABLE 40 CITY OF TOLEDO COMBINED SEWAGE REGULATORS

	ulator Name	Stream	R.M.	Size, "	Drainage Sanitary (Acre	Storm	Location
4	Paine	Maumee (E)	3.2	84	380.2	296.0	2201 Front @ Paine
5	Dearborn	Maumee (E)	4.1	90	523.7	352.0	1547 Front @ Dearborn
6 7	Main	Maumee (E)	4.82	60,54	207.8	174.7	Main @ Sports Arena
8	Nevada Essestt	Maumee (E)	5.8 6.5	60 48	581.6	608.0 104.6	609 Nevada @ Miami 1152 Miami @ Fassett
o 9	Fassett Oakdale	Maumee (E) Maumee (E)	6.85	40 93	116.9 638.2	467.1	1435 Miami @ Oakdale
22	New York	Maumee (V)	2.37		116.8	44.9	212 New York @ Summit
23	Columbus	Maumee (W)		48,102	675.9	204.9	214 Columbus @ Summit
24	Gales	Maumee (W)	3.25		27.6	27.5	216 Galena @ Summit
25	Ash	Maumee (W)	3.6	48	75.7	101.9	200 Ash @ Summit/I-280
26	Magnolia		4.2	48	143.3	121.2	210 Magnolia @ Summit
27	Locust	Maumee (W)	4.66		141.2	111.5	215 Locust between
				,			Water & Summit
28	Jackson	Maumee (W)	4.9	72	630.2	630.2	216 Jackson between
		()					Water & Summit
29*	Adams	Maumee (W)	4.98	24			215 Adams @ Portside
30	Jefferson	Maumee (W)	5.2	60	435.9	440.3	215 Jefferson between
							Water & Summit
31		Maumee (W)	0.07	36			315 Monroe @ Summit
32	Williams	Maumee (W)			70.3	59.9	
33	Maumee	Maumee (W)	7.5	60	345.5	343.6	502 Maumee @ Orchard
41	Knapp	Swan Cr.	0.8	48	77.3	57.8	328 St. Clair @ Williams
42		Swan Cr.	0.93		40.2	37.5	42 Erie St @ Hamilton
43	Hamilton		1.1	60	292.7	349.8	Hamilton & Ant. Wayne Tr.
44		Swan Cr.	1.58		37.9	22.2	City Pk, S. of bridge
45	Ewing	Swan Cr.	1.9	48	261.9	220.2	Ewing & Hamilton
46	Hawley	Swan Cr.	2.65	60	508.3	470.9	Hawley, S. of bridge
47	Junction		3.15	96	867.4	841.3	Pere West, E. of Gibbons St.
48	Hillside	Swan Cr.	3.45		190.5	49.3	Hillside & Chester St
49	Woodsdale		4.3		547.3	17.9	Woodsdale & South St.
50	Highland		4.22		230.6	209.3	Fearing St. in Highland Pk.
61	Lagrange	Ottawa R.	6.45	60	555.2	167.1	3503 LaGrange
62	Hindormon	e Ottawa R.	6.7	*** ***	958.3	865.6	0 Manhattan Blvd 202 Manhattan
02	windermer	e Ullawa K.	0.7	~ ~	900.0	000.0	0 Windermere
63	DoVilbics	Ottawa R.	6.8	72	933.7	921.4	3646 Detroit @
00	DEA110122	ULLAWA N.	0.0	16	233.1	761.7	Phillips
64	Lockwood	Ottawa R.	7.75	114			3627 Lockwood @ I-475
65		Ottawa R.	8.65		283.5	213.4	2584 Ayres @ S. Cove
66	Monroe	Ottawa R.	9.2	36	3763.0	0	3708 Monroe @ S. Cove
00		occana N.	J.L	50	5705.0	v	W. of bridge
							n. or pridge

* Data refers to old regulator, which was replaced by a new unit at the end of Adams Street.

	No. of <u>Regulators</u>	October 1986	November 1986	December 1986	January 1987	February 1987
Receiving Stream						
Maumee East	6	1400	1255	2376	2081	626
Maumee West	11	2089	3156	2668	2769	2871
Swan Creek	9	2404	2019	2627	2463	2028
<u>Tenmile Creek</u>	6	96	44	50	0	0

TABLE 41TOLEDO REGULATOR BYPASSES, 10/86-2/87

Maumee Combined Sewer Overflows

The City of Maumee published its CSO study in 1982.⁷¹ It included detailed analysis of the overflow with regard to correlation between rainfall quantity, intensity, combined sewage bypasses, and their effect on the water quality of the Maumee River. While the primary focus of this study was the City of Maumee, it also included sampling on the Perrysburg side of the river. Samples were collected at two outfalls in Perrysburg, and three in Maumee. Rainfall data was collected in Maumee at four locations to correlate the response of the combined sewer system in terms of measured overflow. Sampling included primary sites (quality and quantity discharged), and secondary sites (quality only). Results of this sampling indicated high levels of BOD₅ and nutrients, and high bacteria counts.

The Maumee CSO Study concluded that rainfalls as low as 0.05" resulted in bypasses. These bypasses resulted in violations of the fecal coliform standards for the Maumee River, but did not have a serious impact on dissolved oxygen. The study recommended the City of Maumee proceed with a sewer separation program. A list of Maumee combined sewage regulators is given in Table 43.

Regulator No. Name	Stream	Size, Inches	Drainage Area Sanitary Storm (Acres)	Location
1	Maumee	12		Broadway & Ford
2	Maumee	18	38	Wayne & Kingsbury
3	Maumee	20	136	Broadway & Čonanť
4 *	Maumee	15	39	Broadway & Elizabeth
5	Maumee	12		Front & Ford
6 *	Maumee	24		Front & Kingsbury
7 *	Maumee	20		Front & Conant
8 *	'Maumee	15		Front & Gibbs
9	Maumee	12		Key & River Rd
10*	Maumee	36	113	Waite & Sackett

TABLE 42 CITY OF MAUMEE COMBINED SEWAGE REGULATORS⁷¹

* The City of Maumee's combined sewer system includes 10 regulators. Combined sanitary and storm water overflows to the Maumee at six locations: these are 33", 60", 20", 18", 15", and 60" inches in diameter, starting at the one furthest upstream. Those regulators marked with an asterisk (*) are directly above outfalls.

Perrysburg Combined Sewer Overflows

The City of Perrysburg's CSO study was prepared in 1982.⁷⁴ River sampling data showed significant CSO-related increases in fecal coliform bacteria concentrations, but no serious impacts on dissolved oxygen and other water quality parameters. The study included the development of combined sewer network and receiving water quality models to evaluate various CSO control alternatives.

The *Perrysburg CSO Study* concluded that rainfall as low as 0.05-inch resulted in CSOs. The study recommended the capture and conveyance of CSOs to a swirl concentrator with chlorination facilities. The treated CSO would then be discharged to the Maumee River. Considering problems experienced with swirl concentrators during the years since the preparation of the CSO study, the City currently favors a combined sewer system separation project. Such a separation project would reduce the average annual CSO volume to the Maumee River by 90%.

The City of Perrysburg's discharge permit 74,75 lists overflows and bypasses as shown in Table 41.

TABLE 43 CITY OF PERRYSBURG, OHIO BYPASS AND OVERFLOW POINTS

OEPA STATION NO. DESCRIPTION

D702002 Louisiana Ave - Water St. Maumee River D702003 Elm St. north of Front St. Maumee River D702004 Cherry St. - Water St. Maumee River Gorman View Subdivision D702005 Grassy Creek D702006 Hickory St. along Grassy Creek Grassy Creek D702007 Louisiana Ave. along Grassy Creek Grassy Creek D702008 Elm St. along Grassy Creek Grassy Creek D702009 West Boundary at Second Blocked. No discharge

Whitehouse Overflow Points

Like Perrysburg, the Village of Whitehouse's treatment plant does not have adequate capacity to treat combined sewage. Average 1986 flow was 0.32 mgd, not including by-passed sewage, to the 0.29 mgd WWTP. Whitehouse's sewer system suffers from a severe inflow/infiltration (I/I) problem.

The storm sewers are connected indirectly to the sanitary sewer system. Within the system are 8 overflow points where storm flow may be diverted to the sanitary line. Seven overflow locations discharge storm water to Disher Ditch; One overflow discharges to Lone Oak Ditch.

The Village of Whitehouse has submitted plans for construction of an interceptor sewer to tie into the Lucas County sanitary sewer system. When this project it complete, Whitehouse will be served by the Lucas County WWTP, and will abandon its existing WWTP. The Village is working toward the goal of eliminating all CSOs by the end of 1989. The Village of Whitehouse's CSO points are listed in Table 42.

RECEIVING STREAM

Regulator No. Name	Stream	Size	Location
Texas St.	Disher Ditch	8"	Texas St. S. of Waterville St.
Field Ave.	Disher Ditch	18"	Weckerly, East, Field Streets
Gilead St.	Disher Ditch	15"	South, Toledo, Maumee, Providence, Gilead Streets
Heller Rd.	Disher Ditch	12"	Heller S. of Waterville St.
Texas St.	Lone Oak Dt.	8 "	Texas N. of Shepler
Gilead St.	Disher Ditch	15"	Waterville St & Alley NE of Providence St.
Providence S	t Disher Ditch	10"	Providence St. S. of Otsego St.
Otsego St.	Disher Ditch	10"	Providence St. south of Otsego St.

TABLE 44 VILLAGE OF WHITEHOUSE CSO POINTS

HOME SEWAGE DISPOSAL

As reported in the *Groundwater Quality Baseline Report*⁷⁶, June 1982, individual home sewage disposal systems affect groundwater quality. The Lucas County Health Department reported leachate problems in the following areas within the county:⁷⁷ See Figure 51.

Sylvania Township:

Area bounded by Michigan line, Whiteford Road, Alexis Road and Sylvania corporation limits.

Area bounded by King Road on west, Gower Road on east, Brint Road on south, Sylvania corporation limits on north.

Winterhaven Road and area near the intersection of Centennial and Sylvania-Metamora Roads.

Villa Farms Subdivision bounded by Central Avenue on the north, Centennial Road on east.

Monclova Township

Coder Road Area, Village of Monclova

Springfield Township

South Hill Park, Dorcas Farms, Layer Road, Village of Holland, Culley Road, Haven Park and Fairhaven Subdivisions, Devonshire Lane Subdivision.

Spencer Township

Most of township

Jerusalem Township

All areas subject to flooding.

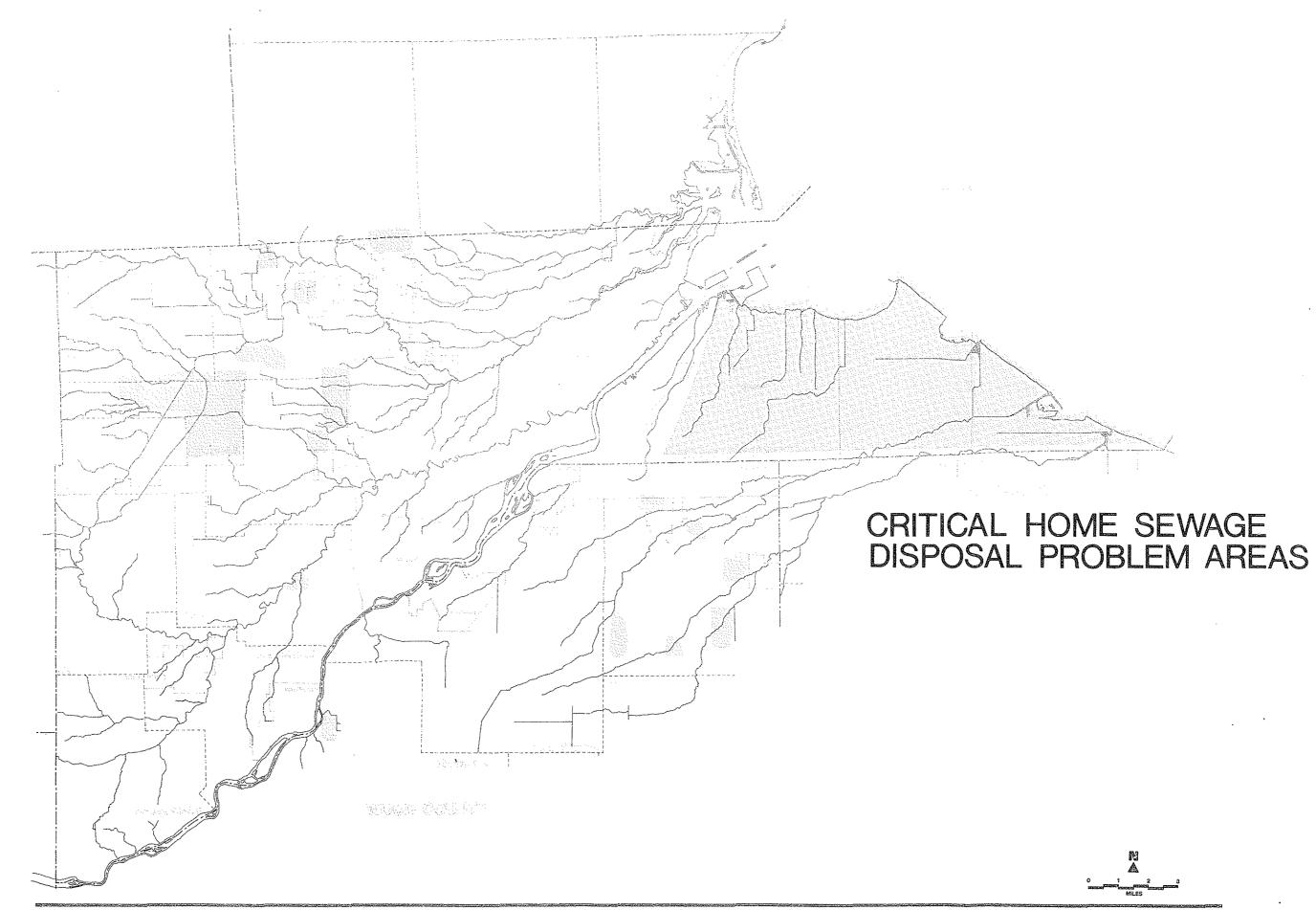
City of Oregon

Entire area from Lallendorf Road east to City limits.

Three of the above identified problem areas, Sylvania and Springfield Townships and the City of Oregon, are of significant concern due to projected population increases. While public sewers have been targeted for these areas, facility planning must be stepped up. With implementation of the Western Lucas County Facility Plan and related segmented plans, many troublesome areas can be eliminated with tie-in to public water and sewers.

These improvements will eliminate some package treatment plants and improve water quality in minor receiving streams. Because of the costs and cutbacks in federal funding, delays in bringing these areas on-line will continue to thwart the effect of public health improvements. Conditions will continue to worsen in areas where densities are high and existing on-site systems are failing. The soil and groundwater conditions are such that at best, with a strong operation and maintenance program, the situation could be stabilized, but not significantly improved. It is imperative that those areas targeted for facility treatment system be given highest priority to reduce the health risks associated with contaminated surface and groundwater conditions. A second area of concern is in areas which are not targeted for correction in the near future. These are areas in eastern Lucas County and extreme western Lucas County outside of sewered areas, and are not near any sewer system. These on-site systems will continue to be a problem and like the on-site systems in the targeted areas of high density and priority, a sound operation and maintenance program would help, but often will not overcome the soil conditions, densities, lot size and high water table problems which are part of the landscape. Development bans are difficult to enforce and at times met with strong opposition.

The third area of concern is development in areas where soil and conditions warrant development bans or areas where systems are failing because of poor site selection in the past. These situations have resulted largely from inappropriate planning decisions and often left the health department in a reactive position rather than in a guidance and advisory role for the development.


Table 46 displays the number of septic systems and privies by minor civil division within Lucas County, including 1980 population with forecasted 1990 population and the percent change between these two decades, along with the status of active 201 facility projects as of June 1983. These statistics were taken from Table 3 and Table 8 of the TMACOG publication *Home Sewage Disposal Priorities*, December 1983.⁷⁷

Wood County and Ottawa County

The Wood County Health Department experienced a 6% decline of on-site systems from 1970 to 1980. This has resulted from many unsewered communities being sewered and much of the new development being confined to sewered areas. Although bans in some areas have been enforced, problems areas still exist and have increased. The area of major concern within Wood County is largely confined to the urbanizing areas of Lake Township which are outside of sewer districts and in sewered areas where final tie-ins have not been enforced. These areas are specifically include: Tracy Road, Millbury, areas along I-280 and Stony Ridge within the RAP study area.(See Figure 51)

Health departments for both Wood and Ottawa Counties have reported problems for individual home sewage disposal systems in areas of shallow rock (less than 4 feet to bedrock) throughout their counties. Improper water well construction and abandoned water wells also cause localized problems affecting groundwater.

Table 47 page displays the number of septic systems and privies by those minor civil divisions within the AOC for Wood and Ottawa Counties, including 1980 population with forecasted 1990 population and the percent change between these two decades, along with the status of active 201 facility projects as of June 1983. These statistics were taken from Table 6 and Table 11 for Wood County from Table 4 and Table 9 for Ottawa County of the TMACOG publication *Home Sewage Disposal Priorities*, December 1983.

LOWER MAUMEE RIVER REMEDIAL ACTION PLAN-AREA OF CONCERN

tnaw

TABLE 45 LUCAS COUNTY STATISTICS BY MINOR CIVIL DIVISION AND POTENTIAL CONCENTRATIONS OF ON-SITE SYSTEMS (by Year-Round Housing Units)

						To be ^b	
	Septic	Other	1980	1990a	% Chg.	Sewered	Sewered
Harbor View Village	52	7	164	154	-6.1	Step 1	+
Harding Township	188	7	631	639	1.3	Step 1(pt.	`
Jerusalem Township	1,101	26	3,327	3,376	1.5		
Maumee Cîty	69	5	15,747	16,072	2.1	Step 1	x
Monclova Township	903	25	4,285	4,467	4.2	Step 1	
Oregon City	1,396	45	18,675	20,111	7.7	Step 1 [*]	x(pt.)
Ottawa Hills Village	40	7	4,065	4,126	1.5	Step 2 [*]	x
Providence Township	828	20	2,702	2,917	8.0	Step 1 (pt	.)*
Richfield Township							
Berkey Village	96		306	319	4.2		
Twp. balance	347	l	1,095	1,044	-4.5	Step 1 (pt	.)*
Spencer Township	446	36	1,744	1,758	0.8	Step 1 (pt	.) [*]
Springfield Township							
Holland Village	292	2	1,048	1,139	8.7	Step 1 [*]	
Twp. balance	2,311	37	15,043	17,440	15.9	Steps 1 &	2*
Swanton Township	975	43	3,379	3,453	2.2	Step 1 (pt	.)*
Sylvania Township						- ,	
Sylvania City	191	12	15,527	18,226	17.4		x
Twp. balance	3,844	46	17,534	18,698	6.6	Steps 1,2&	3 [*] x(pt.)
Toledo City	750	426	354,635	336,565	-5.1	Steps 1&2*	x
Washington Township	167	4	4,000	4,159	4.0	Steps 3 [*]	x(pt.)
Waterville Township			-	•		•	
Waterville Village	18		3,884	4,537	16.8	Step 1 [*]	x
Whitehouse Village	100	ι	2,137	2,640	23.5	Step 1	x
Twp. balance	494	8	1,813	2,030	12.0	Step 1 (pt	*

1980 Census, STF 3A Table 108⁶⁸

+ - Sewers constructed, but not connected to treatment facility.

a - TMACOG Draft Population Forecast for Lucas County 1985 through 2010.

b - TMACOG Status of Active 201 Facility Projects June 1983.

* - Out of Funding Range to receive USEPA grants in the next five years according to the Northwest District Office Ohio EPA.

(Excerpts from Table 3 and Table 8 - Home Sewage Disposal Priorities, December 1983, TMACOG)

TABLE 46 SEGMENTS OF WOOD AND OTTAWA COUNTIES WITHIN AOC DEALING WITH STATISTICS BY MINOR CIVIL DIVISION AND POTENTIAL CONCENTRATIONS OF ON-SITE SYSTEMS (by Year-Round Housing Units)

						To be ^b	
	Septic	Other	1980	1980a	% Change	Sewered	Sewered
WOOD COUNTY:							
Lake Township							
Millbury village	15		955	1,452	52		
Walbridge village	44		2,900	2,941	1.4	under construction	on
Twp. balance	1,099	23	7,044	8,306	17.9	Step 3 (pt.) [*]	x(pt.)
Middleton Township							
Haskins village	22		568	655	15.3		x
Twp. balance	594	30	1,880	2,409	28.1		
Northwood city	150	37	5,495	6,730	22.5		x
Perrysburg city	60		10,215	11,559	13.2	Step 1&2 ^{*0}	x
Perrysburg Township	1,325	77	10,651	14,235	33.6	Step 1 (pt.)*	x (pt.)
Rossford city	8		5,978	6,235	4.3	Step 1 [*]	x
Troy Township							
Luckey village	263	8	895	932	4.1	Step 1 ^{*0}	
Twp. balance	861	33	2,663	3,088	16.0	Step 1 (pt.) [*]	
OTTAWA COUNTY:							
Allen Township							
Clay Center Village	91	6	327	336	2.8	Plan of Study*	
Twp. balance	878	23	2,995	3,319	10.8	Plan of Study*	
Benton Township							
Rocky Ridge Village	130	3	457	472	3.3		
Twp. balance	667	28	1,989	2,050	3.1		

1980 Census, STF 3A Table 108^{68}

- TMACOG Draft Population Forecast for Wood & Ottawa Counties
 1985 through 2010, December 1983
- b TMACOG Status of Active 201 Facility Projects June 1983.
- * Out of Funding Range to receive USEPA grants in the next five years according to the Northwest District Office Ohio EPA.
- 0 Proceeding without Federal Funds.

(Excerpts from Tables 4, 6, 9 and 11 - Home Sewage Disposal Priorities, December 1983, TMACOG)

ACTIVE AND CLOSED LANDFILLS/DUMPSITES

As reported in the Groundwater Quality Baseline Report,⁷⁶ June 1982, active and closed landfills and/or dumpsites affect groundwater quality. In past years, many dumpsites were created by private companies and local governments. Every political subdivision has had its dumpsite, usually in a low area along a stream just at the edge of its most populated area. These dumps were not designed to prevent leaching of chemicals and liquidized substances into surface waters or groundwater. These dumps are often sources of groundwater contamination and are not monitored for their impact. The location of some dumpsites are not even known today and periodically one is found because the buried material has moved upward to the surface, or someone begins to dig a garden, or children find a leachate seep or spring to play in.

Within the past twenty years, the practice has been to site "sanitary" landfills with dependence upon clay soils to prevent leachate problems. They were still sited along a stream applying the trench and fill method, with no consideration that seasonal high water table could be within one to five feet of the surface. Underdraining with leachate collection systems were not required. In many instances during excavation, groundwater had to be pumped with collapsible hoses in order to place the solid wastes in a dry trench. Leachate is generated by the infiltration of precipitation and surface runoff.

Past operational permits generally concentrated upon daily cover of the trench. Therefore, information on old sites is at best sketchy due to the fact that monitoring wells were not required. Today, however, monitoring wells and methane venting is required for new sites, or when a new cell is being established at a currently operating landfill.

Only two industrial landfills were identified in the 1981 Ohio EPA Open Dump Inventory. The National Castings Midland Ross Corporation contains a 2 acre onsite landfill that contains only foundry sand. The landfill is 2,500 feet from the Maumee River.

The second site is the Rossford Landfill, a 26 acre parcel located 25 feet from Grassy Creek within the City of Rossford. The city employs the trench method using 10 acres overall. Its use is restricted to Rossford residents and businesses. There is an indication that contaminants are leaching into surface water and the Ohio EPA Northwest District Office believes that the site warrants further investigation. It has no leachate collection system, groundwater monitoring plan or methane gas detection system. Depth to seasonal high water table is 1 foot.

Although it was excluded from this Ohio EPA list, there are abandoned ponds on Libbey-Owens-Ford Company property from which leachate is infiltrating Otter Creek via deteriorated sewer lines which run underneath the abandoned site. These grinding sand settling ponds, or lagoons, covered 50 acres and were used to settle fine particles of silica and felt waste products from the polishing and grinding of glass. They were abandoned prior to December 1971 and were covered with a layer of clay and are most likely unlined. It is important to note that no monitoring information from these sites is available for analysis. However, the Ohio EPA Northwest District Office reports that the leachate discharging from the Libbey-Owens-Ford waste glass settling ponds in Rossford contains arsenic.

Licensed Solid Waste Landfills

There currently 7 landfill sites in the AOC which are licensed by its respective local health department to operate. Two of these, the National Castings Landfill and the Rossford Landfill, are discussed above. The other five are described briefly following the table which displays them. These are all listed in Table 47 and displayed in Figure 52.

Maumee Basin *Remedial Action Plan Investigation Report*

TABLE 47 LIST OF LICENSED SOLID WASTE LANDFILLS

License #	Health Department	Landfill	Map #	Status
48-00-01	Lucas County	Fondessy Enterprises* Landfill #1	А	Closed
York St & ()tter Creek Rd	Oregon, Ohio		
48-00-05	Lucas County	Westover Landfill 820-920 Otter Creek Rd Oregon, Ohio	В	Closed
48-00-09	Lucas County	Toledo Edison Co. Bay Shore Ash Landfill Oregon, Ohio	C	Active
48-00-06	Toledo	Hoffman Road Landfill 4545 Hoffman Road Toledo, Ohio	D	Active
48-01-06	Toledo	National Casting Landfill Midland Ross Corp. 1414 East Broadway Toledo, Ohio	E	Active
87-00-01	Wood County	Evergreen Landfill Waste Management 2625 E. Broadway Northwood, Ohio	F	Active
87-00-02	Wood County	Rossford Landfill 8250 Wales Road Rossford, Ohio	G	Active
* Envirosa	afe Services of Ohio			

Fondessy Landfill

A 135 acre parcel located in the Otter Creek watershed in Oregon is operated as a hazardous waste site by Envirosafe Services of Ohio, Inc. It was first operated as a landfill for solid wastes for municipal and industrial disposal in the 1960's. Since the early 1980's the site has accepted only hazardous waste for disposal. These earlier solid waste cells known as landfill areas 1 and 2 and the Millard Avenue Landfill have no leachate collection system or synthetic liners. Cell F, designed for hazardous wastes, has no synthetic liner but does have a leachate collection system. However, newer cells have both. In November 1981 the Ohio Hazardous Waste Facility Board granted permission to dispose of certain types of hazardous wastes at the site under a Part A Interim Status provision under RCRA.

Two raw water supply lines owned and maintained by the City of Toledo traverse the site. The first of these water lines was installed in 1940, before the facility existed. This line is made of 78-inch coated steel pipe, lying between 11 and 21 feet below the ground surface. The second water line was installed in 1964, using 60-inch precast, prestressed concrete pipe. Together the lines deliver an average of 73 million gallons of water per day to the Collins Park Water Treatment Plant serving over one-half million people in the Toledo metropolitan area. The company maintains monitoring trenches along the water lines.

In 1983, Conversion Systems, Inc., a subsidiary of the IU International Company, acquired the Fondessy facility. The parent company later reorganized to place Fondessy under the management of Envirosafe Services, Inc., which continues to operate the site as a hazard-ous waste disposal facility. In the spring of 1988, NEOAX, a Hartford, Connecticut firm, acquired more than 90% of the IU International stock.

Westover Landfill

A small parcel permitted to establish operations in the floodplain of Otter Creek, it is now closed. It received municipal wastes from the residents of the City of Oregon and also industrial sludges, solvents, and paint wastes from the Dana Corporation, Johns-Manville, and two refineries, Sun and Standard. A severe leachate problem developed, with a leachate collection system being recently installed. Therefore, seepage only occurs when erosion problems opens an access for it. But erosion control systems are being installed.

Bay Shore Ash Pit

The Toledo Edison Company operates a monofill for its flyash at its location on Bay Shore Road adjacent to Maumee Bay.

Hoffman Road Landfill

A 262 acre parcel located south of the Ottawa River within the City of Toledo, with permit approval granted for Phase I in 1974. A second permit was approved in 1983 for abovegrade filling to 30 feet, which relates to Area D. Generally, there are four "areas" of construction, with areas "A" and "C" considered above grade fill only, with area "B" consisting of above and below grade fill yet to be constructed. An increase in elevation was submitted in the form of a Permit-to-Install in December of 1986. An Ohio EPA Memo dated April 3, 1987 discusses the hydrogeologic and surface drainage of the site. Briefly, the Memo indicated a problem with high water table showing a mounding effect from filled cells and a discharge effect from excavated cells, and concerns with the relatively higher permeability soils in the upper 20 to 25 feet which indicate the potential for leachate migration. As a consequence of these findings, area "B" will be required to have a leachate collection system, if leachate is detected on the site, or is draining from the site. In addition, a groundwater monitoring plan, a methane gas monitoring plan and synthetic liners are required.

Evergreen Landfill

A 265 acre parcel located in the Otter Creek watershed in Northwood, Ohio, was established in the mid-1950's as the Benton Landfill. The site was purchased by Ohio Waste Systems a subsidiary of Waste management in the mid-1970's. In December 1981 the Ohio Hazardous Waste Facility Approval Board granted permission to dispose of certain types of hazardous wastes at the site under a Part A Interim Status provision under RCRA. In November 1985, the company withdrew its application for Part B status, and now only again functions as a solid waste disposal facility. None of the cells at the site have synthetic liners and only recently has a leachate collection system been installed. It has an active methane gas monitoring system, and is working to upgrade its groundwater monitoring system.

The Ohio EPA Northwest District Office reports that there is a staff gauge at the Evergreen Landfill. There are unusual water level fluctuations going on in the bedrock wells following storm events. The purpose of the gauge is to record water level rises in the bedrock immediately following the occurrence of rain. This monitor or staff gauge was installed by the United States Geological Survey, Columbus District Office, in connection with the Northwood Investigation of this site. Waste Management is currently conducting an additional investigation of the site.

Closed Dumpsites

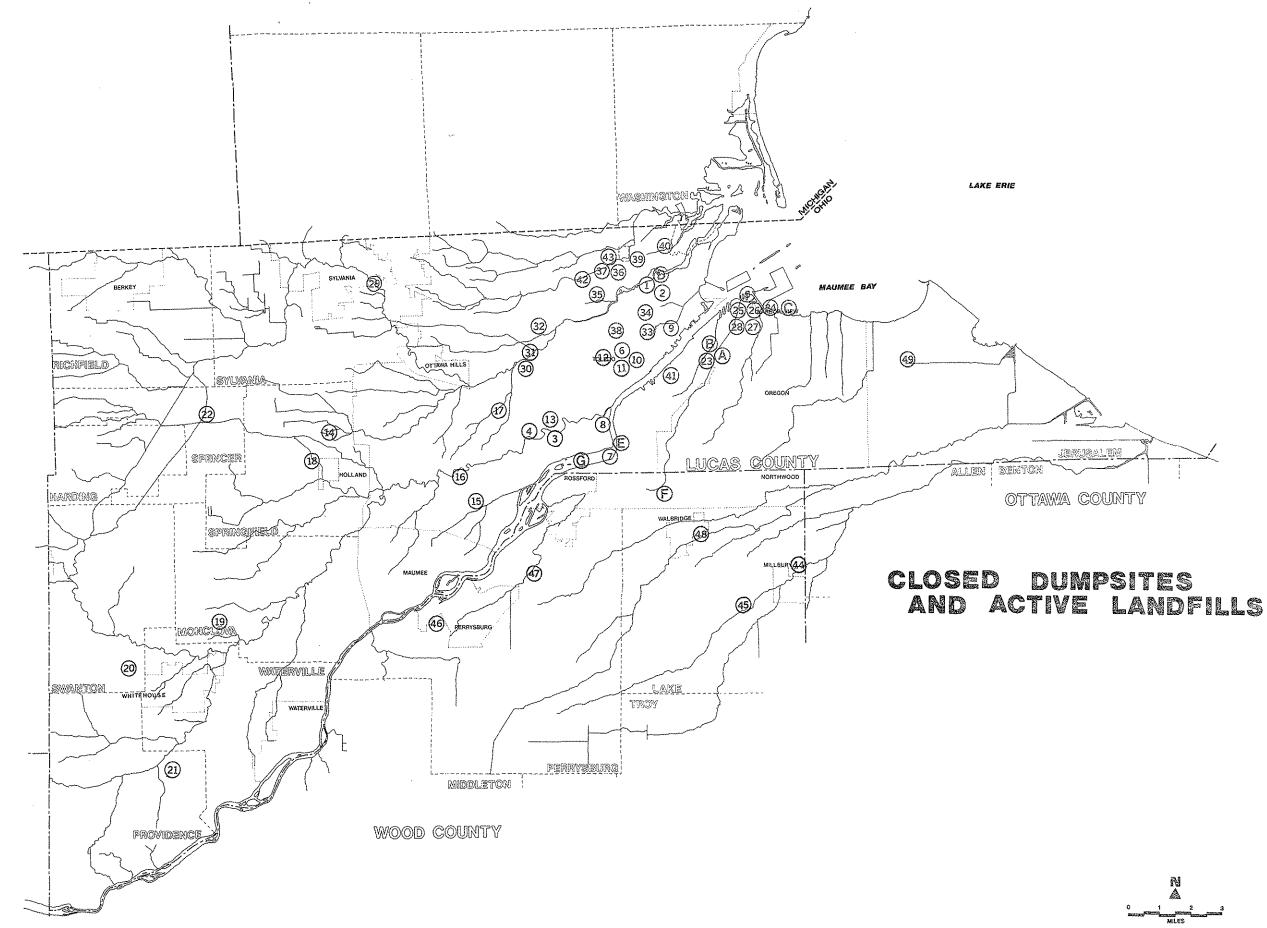
With the assistance of the Northwest District Ohio EPA, the local health departments, the Toledo Environmental Services Division, and TMACOG files, a list of the known landfills and dumps are presented in Table 48 by watershed. It is as complete a list as possible. Included with the listing is the current known status of each of the sites. Many of the sites need further investigation and remedial action plans to correct problems.

There are 49 known closed dumpsites within the AOC. Each received during its active life different types of wastes and each has different types of problems. Many were located in low areas or floodplains along the Maumee River, the Ottawa River, Swan Creek, Otter Creek, etc. These closed sites are listed in Table 48 by watershed areas along with current known status and Map number locations as displayed in Figure 52:

MAP	#	WATERSHED	SITE NAME	CURRENT KNOWN STATUS
1		Maumee	Manhattan Dump now known as Miracle Park 2020 Manhattan Blvd. 21-34 acres, closed 1976 Deeded to Toledo in 1976	Demolition Dump had under- ground fires from alumina oxide powder, but no fire hazard today; past leachate migration, none at present; has vegetative cover, but closure status is uncertain
2		Maumee	Treasure Island Landfill Manhattan, New York & Counter Streets 150 acres, closed 1965	Industrial & Municipal Wastes Had chemical & underground fires; but no fire hazard today; Magnesium was the cause of the fires; has a 6" to 12" clay caps. Planned to become a park. Consideration is being given to to add flyash from Toledo Edison Co. to enhance such development.
3		Maumee	South Avenue Dump at the Maumee River 50 acres in low area. Operated 1950 to 1957 - constructed over the fill are the Anderson & Cargill Grain Elevators, Ohio Bell & Kuhlman Concrete	Mixed municipal and industrial wastes with heavy metals and organics. Cargill installed sumps 20 to 30 feet deep in 1983, was discharging to Maumee River, but, holding tanks are being installed in order to treat the discharge.
4		Maumee	NL Industries aka Bunting Brass & Bronze, 715 Spencer 10 acres, 1916 to 1980 currently Eagle-Picher Bearing Co.	Presumed storage of drosses which would contain heavy metals

TABLE 48 LIST OF CLOSED DUMPSITES BY WATERSHED

MAP #	WATERSHED	SITE NAME	CURRENT KNOWN STATUS
5	Maumee	Gulf Oil Refinery 2935 Front Street 2.75 acres sediments & sludges, 1953 to 1981 4 acre landfarm 4 separator ponds	Hazardous Wastes - Principal concerns are the landfarm with leaded sludge, followed by weathering area, the land- fill and sludge pit areas
6	Maumee	Owens-Illinois, Inc. Libbey Plant 27 940 Ash Street 1883 to present	In 1800s some 10,000 cu. ft. of old furnaces and other waste materials are buried at the site containing arsenic & chromium
7	Maumee	Florence Street	Was an open dump
8	Maumee	St. Mary's Street	Was an open dump
9	Maumee	Columbus Street	Was an open dump
10	Maumee	Buckeye Street	Was an open dump
11	Maumee	Mulberry Street	Was an open dump
12	Maumee	Buckeye Basin	Was an open dump
13	Swan	Western Avenue	
14	Swan	Angola Road Mobile Home Park constructed over site	Leachate contains iron
15	Swan	Arlington Avenue	
16 17	Swan Swan	Swan Creek Landfill Glendale at Swan Creek Scott Park	Demolition Dump
18	Swan	Holland Village	
19	Swan	Springfield-Monclova Twps.	
20	Swan	Swanton Township	
21	Swan	Providence Township	
22	Swan	Spencer Township	
23	Otter .	Sun Oil of Pennsylvania 1819 Woodville Road 1940-1950 tank bottoms contaminated with lead disposed in 37 pits within the dikes of the tank farm.	Contents of 37 pits later excavated and disposed of in onsite landfill adjacent to tank farm; monitoring wells are in place.
24	Otter	Union Oil co. of CA (UNOCAL) 1840 Otter Creek Road Operated as refinery until 1967 when sold to SOHIO, but still operated a petro- leum products storage terminal	Concern for tank diked area to retention pond which is for oil and water separation, an NPDES permit is in preparation.


.

^

MAP #	WATERSHED	SITE NAME	CURRENT KNOWN STATUS
25	Otter	Heist Corporation 3816 Cedar Point Road In 1981, old oil sludge pit in depressed area filled in.	Problems surfaced again in 1983 with black oily sludge breaking through earth cover; problem corrected but began oozing again in 1985 - no known offsite discharge currently
26	Otter	Standard OII Co. (SOHIO) 4100 Cedar Point Road 1970s start of 5 acre landfarm for sludges, emulsions; leaded tank bottoms buried in small pits within tank farm.	Monitoring operation in place; all stormwater is collected and treated.
27	Otter	Westover 820 Otter Creek Road Municipal wastes, industrial sludges, solvents & paint wast	Leachate collection system recently installed and erosion control system being developed es
28	Otter	Fondessy Landfill #1 site west of Otter Creek Rd. demolition wastes	Monitoring operation to be expanded
29	Ten Mile	King Road Landfill 3535 King Road, 44 acres Operated by Lucas County from 1954 to 1976	Groundwater contamination from leachate migration containing metalscadmium, chromium, lead, enforcement action pending
30 [.]	Ottawa	Owens-Illinois, Inc. Technical Center 1700 North Westwood On-site Landfill	Chromium and lead sludges; test borings performed show no contamination discovery
31	Ottawa	Owens-Illinois, Inc. Hilfinger Site 1800 North Westwood Hilfinger landfilled on- site electroplating & metal finishing wastes. Closed in late 1970s.	Soil had been contaminated by heavy metalschromium, arsenic, cadmium, nickel, zinc. Clean up completed with polyethylene liner and monitoring wells. Currently a parking lot.
32	Ottawa	South Cove Blvd.	
33	Ottawa	Willys Park	Part of North Cove Blvd. AMC investigation
34	Ottawa [.]	Joe E. Brown Park Manhattan Blvd.	Presently a ball field
35	Ottawa	North Cove Landfill North Cove & Drexel Dr. Operated by AMC as land- fill from 1941 to 1970. Industrial residues i.e. solvents & sludges, now owned by City of Toledo	During installation of a sanitary sewer west of site in 1979, hydrocarbon fumes were encountered. Groundwater sampling performed indicating presence of hydrocarbons and low boiling solvents. AMC is planning to conduct a remedial investigation/feasibility study.

•

MAP #	WATERSHED	SITE NAME	CURRENT KNOWN STATUS
36	Ottawa	Sheller-Globe Corp., Armored Plastics, Lint & Dura Avenues Approx. 100 drums of Paint Residues disposed	Solvent portion believed to have evaporated leaving only residue.
37	Ottawa	Tyler Street Dump Operated by City of Toledo, located end of Tyler St. north of Ottawa River Municipal & industrial wastes	Leachates to Ottawa River
38	Ottawa	Stickney Avenue Landfill Owned by American Motors Corp. located southeast of Ottawa River Industrial wastes i.e. solvents & sludges	Leachates to Ottawa River composed of low conventional pollutants and organics
39	Ottawa	Dura Dump, 55 acres Operated by City of Toledo Located northwest of river Municipal, Industrial and Demolition Wastes - Opened 1952, closed 1980.	Leachates to Ottawa River containing PCBs, organics. Under investigation with a remedial action plan being developed.
40	Ottawa	DuPont Waste Lagoon Matzinger Road 2% formaldehyde solution	Lagoon filled in. Site drainage patterns unknown, but no discharge to river.
41	Duck Creek	Consaul Street Dump Operated by City of Toledo from 1948-1966, now site of Parkway Mobile Home Park solvents & paint sludges	Leachate collection system to sanitary sewer; water table within 6 feet of surface Methane Gas Venting; ongoing Ohio Dept of Health Study
42	Silver/ Shantee	Jackman Road	Was an open dump
43	Silver/ Shantee	NL Industries/Doehler- Jarvis/Farley Metals Inc. 5400 N. Detroit Avenue Toledo, Ohio	Past on-site storage for Plating Sludges
44	Crane	Millbury Village	Leachate problem; solid wastes
45	Crane	Asman Dump St. Rt. 795 & Fostoria Rd.	Leachate problem; solid and hazardous waste
46	Grassy	Perrysburg Township	
47 ^{°°}	Grassy	Perrysburg City St. Rt. 795 & Glenwood Rd.	
48	Cedar	Walbridge-Lake Township	
49	Wolfe	Jerusalem Township	

LOWER MAUMEE RIVER REMEDIAL ACTION PLAN-AREA OF CONCERN

Underground Storage Tanks

The federal definition of an Underground Storage Tank (U.S.T.) is any tank including underground piping connected to the tank that has at least 10 percent of its volume underground. Not included in this definition are the tens of thousands of unregulated domestic heating oil tanks or other private fuel tanks. Several types of underground tanks are currently exempt from federal regulation:

farm and residential tanks holding less than 1,100 gallons of motor fuel used for non-commercial purposes;

tanks storing heating oil burned on the premises where it is stored;

tanks on or above the floor of underground areas, such as basements or tunnels;

septic tanks and systems for collecting storm water and waste water;

and flow-through process tanks.

Hazardous waste tanks are regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Waste oil tanks may eventually also be regulated under Subtitle C. The great majority of U.S.T.s nationwide (more than 96 percent) contain petroleum fuels; the remainder store raw chemicals. U.S.T.s are found virtually everywhere in the industrialized world. US EPA estimates that approximately one quarter of the U.S.T.'s leak. ⁷⁸

In Ohio more that 70,000 commercial U.S.T.s currently in use are registered with the State Fire Marshal. Because the registry is still being developed, the Fire Marshal's Bureau of Underground Storage Tank Regulation estimates that there are actually close to 100,000 U.S.T.s in Ohio subject to regulation. As of May 1988, the registry was still incomplete. There are 2,834 U.S.T.s for Lucas County, 879 for Wood County, and 284 for Ottawa County. Because U.S.T.s are associated with business and industry, it appears that they are found in higher concentrations in areas of greater population.⁷⁸

Statewide, there have been more than 1,800 leaks from U.S.T.s reported to Ohio EPA since 1978. Ohio EPA's Office of Emergency Response reports that during this period there have been 50 reported leaks for Lucas County, 22 for Wood County, and 12 for Ottawa County. The majority (65 to 75 percent) of U.S.T. leaks came from tanks at gas stations.

Leaking U.S.T.s occur in every locale. Leaks are typically very small compared to tank size, and traditional inventory control measures such as the graduated dipstick pole and tallying volumes of liquid withdrawn are not accurate enough to detect most leaks. U.S.T.s have contaminated groundwater and surface water, saturated soil with gasoline or other flammable or toxic substances, and created fire and explosion hazards when vapors enter buildings through foundation cracks or sump pumps. Gasoline from U.S.T.s in developed areas frequently is first discovered in utility company manholes, where it can destroy wiring and cause an explosion due to the concentration of gasoline vapors and a health hazard for workers due to the concentration of residual benzene in a confined space.⁷⁸

Pits, Ponds and Lagoons

The Ohio EPA conducted a statewide assessment and inventory of surface impoundments during 1978 and 1979. The purpose was to determine their polluting effect upon underground drinking water sources. This project was referred to as the Surface Impoundment Assessment (SIA). By definition, surface impoundments include any earthen pond, pit or lagoon used for the storage, treatment or disposal of wastewaters and other fluids related to industrial, municipal, agricultural, mining, and oil and gas related activities.

With the assistance of the Northwest District Ohio EPA, TMACOG examined the SIA file for the Counties of Lucas, Wood and Ottawa. A list of the known pits, ponds and lagoons as listed in this SIA file are presented in this section by watershed in Table 49. It is as complete a list as possible. Included with the listing is the Map #, watershed name, Facility Identification No., the number of impoundments at the site, the purpose of the impoundment, the age at the time of the survey, the size of impoundments, the recorded gallons per day if known, and the scored groundwater contamination potential rating (GWCPR). The highest groundwater contamination potential rating a site could receive is "29" while the lowest is "1". The NPDES number is also included if such number had been assigned.

There are 36 sites which includes some 68 impoundments within the AOC. None of the impoundments as shown in the SIA file were lined by today's standards, nor were monitoring wells in place for water quality sampling purposes. Generally, this ten year old SIA file indicated that it was "unknown" whether the impoundment had an adverse affect by seepage to water quality of drinking water wells in the area. The SIA was based on a file review by Ohio EPA. The groundwater contamination potential ratings were not based on field observations. A map (Figure 53) displaying these impoundment sites follows the table.

		LIST OF IMPOUNDMENTS BY W	ATERSHED
MAP #	WATERSHED	FACILITY IDENT. #	SIA FILE STATUS GWCPR
1	Maumee	09581858MUN00236 NPDES 0H003719	(SIC 4941) 13
		Waterville Water Treatment 16 North Second Street Waterville, OH 43566	l impoundment waste storage sludge 4 years; 0.03 acres
2	Maumee	09581858IND00274 NPDES 0H0002631	(SIC 3222)
		Johns-Manville Products Corp. 6055 River Road Waterville, OH 43566	3 impoundments 17 wastewater stabilization 13 years; 0.12 acres, total - 0.35 acres 120,000 gallons/day

TABLE 49 LIST OF IMPOUNDMENTS BY WATERSHED

r

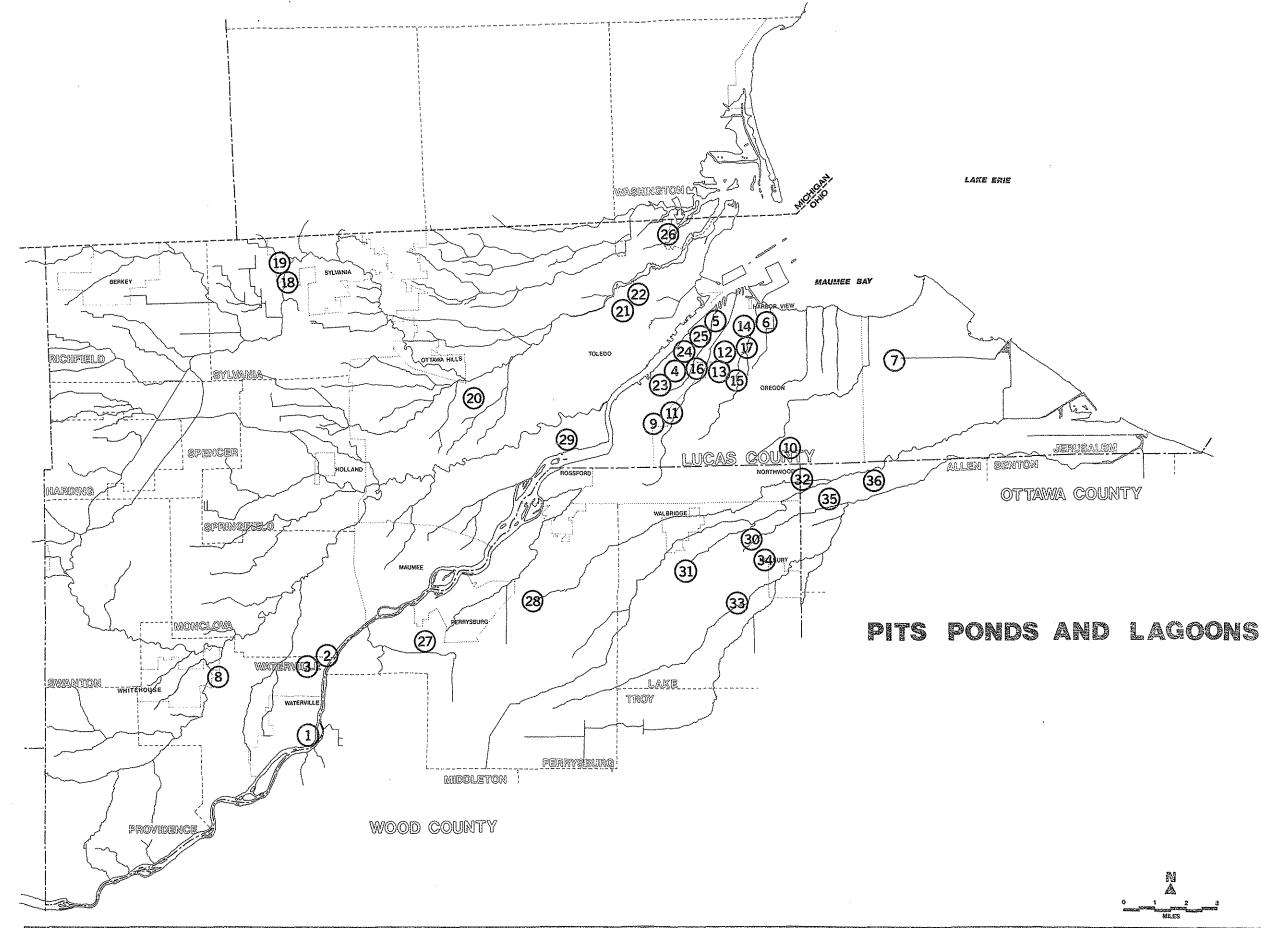
MAP #	WATERSHED	FACILITY IDENT. #	SIA FILE STATUS GWCPR
3	Maumee	09581858IND00275 NPDES 0H0054011	(SIC 3222)
		Johns-Manville Products Corp. U.S. 24 & Dutch Road Waterville, OH 43566	3 impoundments 16 wastewater stabilization 13 years; 0.15 acres, total - 0.5 acres 36,000 gallons/day
4	Maumee	09577000IND00866 Consolidated Dock, Inc. Western Division 636 Paine Avenue Toledo, OH 43605	(SIC) l impoundment 19 wastewater retention 3 years: 0.06 acres Note from SIA file: stormwater runoff = salt piles, coal, slag, etc.
5	Maumee	09577000IND00207 NPDES 0H0002810	(SIC 2911)
		Gulf Oil Co. U.S. Div. Gulf Oil Corp. 2935 Front Street Toledo, OH 43697 (Ceased operation)	4 impoundments 16 waste treatment settling; 15 years 0.5 acres, total - 1.0 acres; 864,000 gals/day
6	Maumee Bay	09558730IND00239 NPDES 0H0002925	(SIC 491)
	Jay	Toledo Edison Co. 4701 Bay Shore Road Oregon, OH 43616	3 impoundments 17 wastewater settling 4 years; 31 acres, total - 50 acres 3,100,000 gallons/day
7	Maumee Bay	09558730MUN00244 NPDES 0H0041815	(SIC 4941)
	Day	Oregon Water Supply 935 North Curtice Road Oregon, OH 43616	l impoundment 18 waste storage of sludge; 18 years l.5 acres
8	Swan _.	09584770IND00863 American Can Co. 10444 Waterville-Swanton Rd. Whitehouse, OH 43571	(SIC 3411) 1 impoundment 17 wastewater retention 4 years; 0.5 acres; 30,000 gallons/day

•

MAP #	WATERSHED	FACILITY IDENT. #	SIA FILE STATUS GWCPR
9	Otter	17341328IND00225 NPDES OH0002453 Libbey-Owens-Ford Co. 811 Madison Avenue Toledo, Ohio 43624 1701 East Broadway Toledo, OH 43605	(SIC 3211) 4 impoundments 16 waste treatment settling 30 years; 21 acres, total - 67 acres LAST YEAR OF OPERATION 1966 Note from SIA file- Abandoned & capped (with clay) "sand ponds" with leachate problems, LOF pond "J"
10	Otter	09577000IND00226 NPDES OH0002453 Libbey-Owens-Ford Co. 1701 East Broadway Toledo, OH 43605 (Ceased operation)	(SIC 3211) 2 impoundments 14 waste treatment settling; 6 years 7.5 acres, total - 19.5 acres
11	Otter	09577000IND00206 NPDES OH0002763 Sun Oil Co. of Penn. Toledo Refinery P.O. Box 920 Toledo, OH 43693	(SIC 2911) 3 impoundment 16 waste treatment equalization 29 years; 7.5 acres, total - 8.5 acres 3,600,000 gallons/day
12	Otter	09577000IND00894 NPDES OH0058581 Phillips Petroleum Co. 275 Millard Avenue Toledo, OH 43605	(SIC 3624) 4 impoundment 13 wastewater settling 10 yrs; 0.26 acres, total - 1.04 acres
13	Otter	0957700IND00892 C.H. Heist Corp. 3805 Cedar Point Road Toledo, OH 43694	(SIC 299) 3 impoundments 14 waste storage 7 years; 0.03 acres, total - 0.09 acres
14	Otter	09558730IND00223 NPDES OH0058629 Commercial Oil Services, Inc. 3600 Cedar Point Road Oregon, OH 43616 (Ceased operation)	(SIC 2999) 3 impoundments 18 waste disposal 13 years; 0.18 acres, total - 1.43 acres

MaumseigationRampdral Action Plan

J 130


MAP #	WATERSHED	FACILITY IDENT. #	SIA FILE STATUS	GWCPR
15	Otter	09558730IND00865 Bills' Road Oil Services 3500 York Street Oregon, OH 43616	(SIC 2899) 2 impoundments waste disposal 9 years; 0.12 acres, total - 0.25 acres	17
16	Otter	09558730IND00249 NPDES OH0053864 Fondessy Enterprises, Inc.	(SIC 2999) 1 impoundment	17
		876 Otter Creek Road Oregon, OH 43616	waste disposal 11 years; 1.2 acres	17
17	Otter	09577000IND000208 NPDES 0H0002461	(SIC 2911)	
		Standard Oil of Ohio Toledo Refinery P.O. Box 696 Toledo, OH 43694	2 impoundments waste storage oil sludg 33 years; 2 acres, total - 10 acres	16 e
18	Ten Mile	095760221ND00278 NPDES 0H0058521	(SIC 2952)	
		Northern Ohio Asphalt Paving 7920 Sylvania Avenue Sylvania, OH 43460	l impoundment wastewater settling 2 years; 0.25 acres 144,000 gallons/day	17
19	Ten Mile	09572452IND00276 NPDES 0H0033715	(SIC 3241)	
		Medusa Cement Co. P.O. Box 310 Silica Plant Sylvania, OH 44350	l impoundment wastewater settling 6 years; 0.25 acres 500,000 gallons/day	15
20	Ottawa	09577000IND00233 Cleveland Metal Abrasive Co. 2351 Hill Avenue Toledo, OH 43607	(SIC 3291) 1 impoundment waste treatment settling; 6 years 0.03 acres 460,800 gallons/day Note from SIA file - 2 cell settling - av. f	16 I ow
			value is design flow.	

MAP #	WATERSHED	FACILITY IDENT. #	SIA FILE STATUS	GWCPR
21	Ottawa	09577000IND00864 Incorporated Crafts, Inc. 3905 Stickney Avenue Toledo, OH 43608	(SIC 2899) 2 impoundments waste disposal 14 years; 1.5 acres, total - 3 acres	17
22	Ottawa	09577000IND00891 Royster Co., Inc. Creekside Avenue P.O. Box 6986 Toledo, OH 43612	(SIC 2875) 1 impoundment waste water retention 28 years; 2 acres note - surface runoff pond was developed to collect discharge	15
23	Duck	09577000MUN00249 NPDES 0H0030759	(SIC 4941)	
		Toledo Water Treatment Plant 600 Collins Park Avenue Toledo, OH 43605	2 impoundments Waste Storage Sludge 26 years; 16 acres, total - 48 acres	16
24	Duck	09537478IND00277 NPDES 0H0003000	(SIC 4011)	
		Norfolk & Western Railway Ironville Yard 2750 Front Street Toledo, OH 43605	1 impoundment wastewater retention 8 years; 0.5 acres	18
25	Duck	09577000IND00895 Westway Trading Corp. Ind Molasses Division Box 186, Station A	(SIC 2875) 2 impoundments	
		431 John Q. Carey Drive Toledo, OH 43605	(SIA Sheet was missing from the file)	
26	Silver/ Shantee	09577000IND00234 NPDES OH0002640 General Motors Corp. 1455 West Alexis Road Toledo, OH 43612	(SIC 3714) 1 impoundment waste treatment retention; 20 years 0.75 acres 100,000 gallons/day	18

MAP #	WATERSHED	FACILITY IDENT. #	SIA FILE STATUS GWCPR
27	Grassy	17362148IND00217 NPDES 0H0003107 Owens-Illinois, Inc. P.O. Box 1035 Toledo, OH 43601 25875 U.S. Route 25 Perrysburg, OH 43551	(SIC 2893) 1 impoundment 14 waste treatment polishing 12 years; 7 acres 20,000 gallons/day Note from SIA file - old DOT borrow pit - age uncertain
28	Cedar/ Crane	17343610IND00876 NPDES OH0003573 Maumee Stone Co. Perrysburg Plant 8812 Fremont Pike Perrysburg, OH 43551	(SIC 1422) 4 impoundments 23 wastewater settling 14 years; 0.5 acres 138,000 gallons/day
29	Maumee	17351114IND00228 NPDES OH0057835 Penn Central Transportation 6 Penn Center Philadelphia, PA 19103 Stanley Diesel Shop 435 Emerald Avenue Toledo, OH 43602	(SIC) 1 impoundment 18 wastewater retention 25 years; 7 acres 5,000 gallons/day Note from SIA file-old old borrow pit, age unknown
30	Cedar/ Crane	17380486IND00227 NPDES OH0002488 Chesapeake & Ohio Railway Co. P.O. Box 1800 Huntington, WV 25718 Walbridge, OH 43465	(SIC) 1 impoundment 15 wastewater retention 9 years; 0.12 acres clay liner
31	Cedar/ Crane	17341328IND00910 NPDES OH0003212 Burndy Corporation Richards Avenue Norwalk, OH 06856 Toledo Facility P.O. Box 817 Toledo, OH 43601	(SIC 3471) 1 impoundment 17 waste treatment retention 11 years; 0.25 acres 65,000 gallons/day Ceased operation in 1976

MAP #	WATERSHED	FACILITY IDENT. #	SIA FILE STATUS GWCPR
32	Cedar/ Crane	17357190IND00880 Hirzel Canning Co. 411 Lemoyne Road Toledo, OH 43616	(SIC 2033) 3 impoundments 16 wastewater aerated 11 years; 1.25 acres, total - 3.75 acres 30,000 gallons/day
33	Cedar/ Crane	1735020IND00908 Standard Oil Co. of Ohio 1800 L. Midland Bldg. Cleveland, OH 44115 1-280 & S.R. 795 Millbury, OH 43447	(SIC 299) 1 impoundment 15 waste treatment retention 3 years; 0.02 acres bentonite modified liner
34	Cedar/ Crane	17350260IND00229 NPDES 0H0003221	(SIC 2011)
		Molnar Packing Co. Pemberville Road Millbury, OH 43447	1 impoundment 13 wastewater aerated 7 years; 1.2 acres 7,050 gallons/day Note from SIA file - two celled lagoon
35	Cedar/ Crane	12301322IND00231 NPDES OH0003425 Permaglass Div. Guardian Industries Routes 51 & 795 Millbury, OH 43447	(SIC 0321) 1 impoundment 13 waste treatment biologic 9 years; 2.3 acres 30,000 gallons/day
36	Cedar/ Crane	12319736IND00210 NPDES OH0002755 Stokely-Van Camp, Inc. 941 N. Meridan Street Indianapolis, IN 46206 at Curtice, OH 43412 (Ceased operation)	(SIC 2033) 2 impoundments waste treatment aerated; 26 years 2.5 acres, total - 4.4 acres range 150,000 to 269,000 gallons/day CEASED OPERATION in 1979 Note in SIA file - 2 lagoons inventoried, but 2nd lagoon partitioned to form 2 for a total of 3 lagoons.

...

LOWER MAUMEE RIVER REMEDIAL ACTION PLAN - AREA OF CONCERN

(nau

Water Quality Impacts

The Subcommittee's greatest concern deals with the Dura Dump, the LOF Grinding Sand Settling Ponds, and the King Road Landfill. Of obvious concern, too, are the wall-to-wall dumps once sited in the floodplains of the Ottawa River. The various closed sites have degrading impacts on water quality as shown when analyzing the Ohio EPA Water Quality Data Summary conducted during the summer of 1986.

The headwaters of the Ottawa River start in Michigan and flow through western Lucas County where it is known as the Ten Mile Creek. Upstream of the King Road Landfill at River Miles 5.2 and 5.1 (Centennial Road) the water quality is considered good, the primary influence being agriculture. The Dissolved Oxygen is 5.2 to 9.7 mg/l. Metals are near or below the detection limit, as are phenolic samples.

The King Road Landfill is located below River Mile 4.1 where water quality is considered fair to marginally good. This site was closed in 1976, with leachate problems developing in 1972. Heavy metals flowing from the site caused Lucas County to provide a municipal water line to those homes whose water wells were contaminated. Midwest Environmental Consultants has prepared an environmental assessment for the site, and has made recommendations for further investigations. Existing conditions at the site include loose garbage on the surface, insufficient grade, ponding of water, and serious erosion in many areas.

The North Cove Landfill site along the banks of the Ottawa River at River Mile 8.7, was formerly owned by American Motors. It operated from 1941 until 1970 where industrial residues were disposed of. During the installation of a sanitary sewer west of the site in 1979, hydrocarbon fumes were encountered. Groundwater sampling was performed and indicated the presence of hydrocarbons and low boiling solvents. A site assessment was done for the landfill and a remedial investigation/feasibility study is to be conducted by AMC.

Lake Erie dilutes the polluted Ottawa River from River Mile 4.9 to downstream. The Dura, Stickney and Tyler dumps all owned by the City of Toledo, are located along the Ottawa River wherein a lake estuary effect takes place. Also in the vicinity are three Combined Sewer Overflows, and discharges from DuPont and AMC. Leachate samples from the Stickney Avenue site contain low to moderate levels of conventional pollutants and very low levels of organic priority pollutants.

At the Dura Dump the leachate contains high BOD, COD and organics. Among these organic chemicals are PCBs. The range of concentration of PCBs in the Ottawa River Sediment from sampling taken October 1986 is 0.86 to 9.7 parts per million. One sample taken from the river bank was as high as 135 parts per million. The six leachate seeps to the Ottawa River have been calculated to be 60,000 gallons per day. The City of Toledo has initiated a Remedial Investigation/Feasibility Study being conducted by URS Corp. Actions have been to control leaching and runoff at the site. Clean up costs have been estimated to be \$40 million.

The degradation of Otter Creek is directly related to the LOF site. At River Mile 5.9 (Oakdale Street) downstream of the LOF site, the Dissolved Oxygen is 1 mg/l, pH ranges from 8.6 to 10.2; Arsenic is 350 μ g/l; Copper ranges from 17 to 30 μ g/l. The water quality is considered to be very poor. Only upstream at River Mile 7.2, where Otter Creek is a small ditch-like stream, is the water quality considered to be fair.

At River Mile 5.7 (Pickle Road) there are noxious smelling chemicals, a reddish brown flocculent, hydrogen sulfide, etc., with the stream and banks at River Mile 4.0 (Wheeling Street) being oil soaked, with nickel and cyanide also being detected. The Sun Oil Refinery discharge is upstream at this point. At River Mile 2.1 (Millard Avenue), while the water quality is still degraded, it is slightly improved due to the Lake effect on Otter Creek. It is important to remember that Evergreen, Fondessy, and Westover sites each have

leachate collection systems in place.

The ten dump sites on Swan Creek do not appear to have severe water quality impact but this may be due to lack of thorough investigation of sediments and fish sampling.

For the Maumee River, the Ohio EPA Northwest District Office reports that Jennison-Wright (J-W) has entered into a consent decree with OEPA on February 4, 1987. Pursuant to the terms of this agreement J-W has prepared a Remedial Investigation Work Plan (utilizing Woodward Clyde Consultants). This work plan was approved, with conditions by OEPA on January 27, 1988. A draft RI report is expected from J-W on July 25, 1988 (180 days from approval of the RIWP). J-W has not yet begun to complete the RI; however, work is expected to start in the near future. The RI is designed to provide a data-base for determining the best remediation alternative and extent of contamination.

Storm, sanitary, and treated process waters flow from the 26 acre site, located at 2332 Broadway, into the municipal sewer system. A 12" overflow from the city sewer flows through the J-W property into the Maumee River. The office parking lot, at 3463 Broadway, borders the Maumee's west bank. Contamination and remediation alternatives will be addressed by the RI/FS for this also.

RCRA Facilities

Hazardous waste regulations are implemented by Ohio EPA's Office of Solid and Hazardous Waste Management, and cover generation, storage, transportation, and treatment or disposal of hazardous wastes as defined in RCRA and the 1984 Hazardous and Solid Waste Amendments. Ohio's hazardous waste regulations were passed in 1980. Permits to operate hazardous waste facilities are issued by the Ohio Hazardous Waste Facility Board with monitoring and enforcement of the regulations being carried out by Ohio EPA.

Within the area of concern there are 13 different RCRA facilities licensed to operate as shown in Table 50. However, the Evergreen Landfill, operated by Ohio Waste Systems, a subsidiary of Waste Management, did operate as a hazardous waste facility until November 1985. The Fondessy Landfarm (Fondessy Enterprises Site #2) has not received refinery sludges for well over one year, with Ohio ÉPA recommending that the site be closed due to seasonal high water table and other problems.

TABLE 50 LIST OF RCRA FACILITIES

OHD #	Name	Address	
OHD045245271	Cast America Products	4243 South Ave.	43615
OHD005045992	Doehler-Jarvis Castings	5400 N. Detroit Ave.	43612
OHD005041843	E.I. Dupont deNemours	1930 Tremainsville	43613
OHD045243706	Fondessy *	876 Otter Creek Rd.	43616
OHD000721415	Fondessy * Landfarm Site #2	Cedar Point & Wynn	43616
0HD980279376	General Tire & Rubber	3729 Twining St.	43608
0HD005562020	Owens-Illinois Tech. Center	1700 N. Westwood	43607
0HD980586804	S.M. Allen, Inc.	3903 Stickney Ave.	43608
OHD018354894	Sheller-Globe Corp.	Lint & Dura Áves.	43612
OHD063717565	Sheller-Globe Corp.	4444 N. Detroit Ave.	43612
OHD005057542	Standard Oil Co.	Cedar Point Road	43614
OHD004044128	American Cyanamid Co.	12600 Eckel Road	43551
OHD043642958	Motor Wheel**	212 Luckey Road	43443
* Now Enviros	afe		

** Formerly Goodyear

Status of Superfund Sites

There are no designated Superfund sites in the AOC at this time (i.e., no sites have been included in the National Priority List under Superfund/CERCLA). All the preliminary assessments, or the paper trail, have been done for the sites listed in the following table. This is the first step in potential Superfund listing. Those sites listed in the Table 51 have the possibility of being named hazardous waste sites. All the sites listed are considered unregulated sites and each has been ranked high (H), medium (M), Low (L), or no priority (0).

The Ohio EPA Northwest District Office reports that Allied Automotive Toledo Stamping, Owens-Illinois (Hilfinger), Phillips Petroleum, and Webstrand sites have been cleaned up. In cases where responsible companies can be identified, the EPA will try to get funding for cleanup from the businesses involved. The list of possible hazardous waste sites was compiled because of the federal Superfund Law, which required each company to report its hazardous waste activities of the past. The list not only includes these sites, but also sites reported by residents and anonymous tips.

Table 51 includes the US EPA assigned number, the site name and address where known, the US EPA Federal Investigation Team (FIT) ranking, and the Ohio EPA priority ranking.

	TABLE POSSIBLE HAZARDOUS WAS		SITES	
OHD #	Name and Address		FIT	Ohio EPA
0HD980678379 348-0024	Allen Charles Waste Remo Address Unreported (Tran Toledo		L	L .
Not Assigned 348-1027	Allied Automotive Toledo 525 Hamilton Street Toledo	Stamping 99999		
0HD980823801 348-0045	Anderson's 439 Illinois Avenue Maumee	43537	М	L
Not Assigned 348–1029	Champion Spark Plug Address Unreported	99999		
OHD980611636 348-0175	City Owned Dump (AMC, No Foot of Drexel Dr. I-75 Toledo	rth Cove) & Cove 43610		_ Н
OHD000816843 348-0197	Commercial Oil Service, 3600 Cedar Point Road Oregon	Inc. 43616		
0HD980826119 348-0200	Consaul Street Landfill 2510 Consaul Street Toledo	43624	0	L
OHD043636463 348-0207	Coulton Chemical 6600 Sylvania Road Sylvania	43560		<u> </u>
OHD020260188 348-0208	Coulton Chemical Corp. 1400 Otter Cheek Road Oregon	43616	L	L
OHD068081595 348-0211	Cousins Waste Management 2611 W. Center Toledo	43609	L	L
0HD990777930 348-0248	DuPont E.I. Denemours & Matzinger Rd., P.O. Box Toledo		L	M
Not Assigned 348–1031	Erie Coatings Address Unreported	99999		
0HD980613640 348-0286	Essex Group, Inc. 5101 Telegraph Road Toledo	43612	0	0
0HD045243706 348-0303	Fondessy 876 Otter Creek Road Oregon	43616	L	Н

TABLE 51 continued

OHD #	Name and Address		FIT	Ohio EPA
Not Assigned 348-1034	Greise Brothers Address Unreported	99999		
0HD005052410 348-0365	Gulf Oil Co., Toledo Ref 2935 Front Street Toledo	inery 43697	М	M
0HD000608695 348-0367	Gulf Oil Toledo Terminal 2774 Front Street Toledo	43605		<u> </u>
Not Assigned 348-1032	Harrison Junkyard Address Unreported	99999		
OHD981097157 348-0385	Heist Cleaning Service 3804 Cedar Point Road Oregon	43616	L	M
OHD000605295 348-0441	King Road Lucas County S 3535 King Road Toledo	an. 43617	М	M
OHD005050349 348-0463	Libbey-Owens-Ford Co., P 1769 E. Broadway Toledo	lants 4 & 8 43605		
0HD981529092 348-0482	Manhattan Dump 2020 Manhattan Blvd. Toledo	43612	L	L
OHD980615801 348-0502	Maston Septic Service 7202 Providence Whitehouse	43571	0	L
0HD980704381 348-0503	Matlack Trucking Co. 1728 Drouillard Road Toledo	44309	L	L
OHD005045992 348-0568	NL Industries 5400 N. Detroit Avenue Toledo	43612	L	L
OHD005051180 348-0569	NL Industries, Inc. Bear 715 Spencer Street Toledo	ings Div. 43609	L	L
0HD000720268 348-0576	North American Car Corp. 4545 Hoffman Road Toledo	43611	0	L
OHD980679427 348-0588	Oberly Ray DSPL 3812 Twining Street Toledo	43608	0	L
0HD980615934 348-0589	Oberly Robert Waste Remo 3903 Stickney Toledo	val 43608	L	L

,...

TABLE 51 continued

OHD #	Name and Address		FIT	Ohio EPA
0HD980991798 348-0616	Owens Illinois Hilfinger 1800 N. Westwood Avenue Toledo	43606	М	M
OHD005034459 348-0621	Owens-Illinois Libbey Pl 940 Ash Street Toledo	ant 27 43611	L	L
0HD005562020 348-0622	Owens-Illinois Tech. Cen 1700 N. Westwood Avenue Toledo	ter 43607	L	L
OHD980901276 348-0633	Phillips Petroleum Prope Front St. & Millard Ave. Toledo	rty 43605	L	L
OHD018354894 348-0730	Sheller-Globe Corp. Cy A Lint & Dura Avenue Toledo	uto Stamping Div. 43612	L	M
OHD005057542 348-0767	Standard Oil Co. (Ohio) Lallendorf & Cedar Point Oregon	Road 43616	0	L
OHD005046511 348-0781	Sun Oil Co. Of Pennsylva 1819 Woodville Road Oregon	nia 43616	L.	L
0HD980679419 348-0787	Swan Creek Landfill Glendale Avenue Toledo	43614	L	. L
OHD000605956 348-0812	Toledo City of Stickney 3900 Stickney Avenue Toledo	Ave. Dspl. Site 43612	М	H
OHD980611685 348-0813	Toledo Edison Co. Coke O Front & Cherry Streets Toledo	ven Gas Line 43652	L	L
OHD980509905 348-0814	Toledo Ldfl. City of Aka Dura Ave. Toledo	Dura San Ldfl. 43612	L	M
OHD980611677 348-0815	Toledo Powdered Metal Cross Street Toledo	43623	L	L 1211
OHD980510499 / 348-0816	Toledo Sewage Disposal P Bay View Park Toledo	lant 43611	L	L
OHD980611305 348-0818	Treasure Island Landfill Counter & Kalamazoo & Yo Toledo	rk Sts. 43611	М	M
0HD980510523 348-0829	Tyler Street Dump Tyler St. Toledo	43612	Y	M

•

TABLE 51 continued

Name and Address		FIT	Ohio EPA
1840 Otter Creek Road	_	L	L
Oregon	43616		
W/S Ave. Toledo Mun San I South Ave & Maumee River	Landfill	L	М
Toledo	43615		
Webstrand Corp.		L	L
Toledo	43602		
Westover Corp. San Landf	i11	М	М
Oregon	43616		
American Cyanamid Co.		0	0
12600 Eckel Road Perrysburg	43551		
Asman's Landfill		М	М
Rt. 795 & Fostoria Road Millbury	43447		
Chrysler Corp. Toledo Mac	chining Plant	L	L
Perrysburg	43551		
Coastal Tank Lines		L	L
Walbridge	43465		
Evergreen Landfill		L	M
6525 Wales Road Northwood	43619		
Lake Township Dump		L	L
Hanley Road & Cummings Ro Walbridge	oad 43465		
Libbey-Owens-Ford Co. Pla	ant 6	L	L
140 Dixie Hwy. Rossford	43460		
	Union Oil Co., Toledo Re 1840 Otter Creek Road Oregon W/S Ave. Toledo Mun San I South Ave & Maumee River Toledo Webstrand Corp. 525 Hamilton Street Toledo Westover Corp. San Landf 820-920 Otter Creek Road Oregon American Cyanamid Co. 12600 Eckel Road Perrysburg Asman's Landfill Rt. 795 & Fostoria Road Millbury Chrysler Corp. Toledo Mac 8000 Chrysler Drive Perrysburg Coastal Tank Lines 6622 SR-795 Walbridge Evergreen Landfill 6525 Wales Road Northwood Lake Township Dump Hanley Road & Cummings Ro Walbridge Libbey-Owens-Ford Co. Pla	Union Oil Co., Toledo Refinery 1840 Otter Creek Road Oregon 43616 W/S Ave. Toledo Mun San Landfill South Ave & Maumee River Toledo 43615 Webstrand Corp. 525 Hamilton Street Toledo 43602 Westover Corp. San Landfill 820-920 Otter Creek Road Oregon 43616 American Cyanamid Co. 12600 Eckel Road Perrysburg 43551 Asman's Landfill Rt. 795 & Fostoria Road Millbury 43447 Chrysler Corp. Toledo Machining Plant 8000 Chrysler Drive Perrysburg 43551 Coastal Tank Lines 6622 SR-795 Walbridge 43465 Evergreen Landfill 6525 Wales Road Northwood 43619 Lake Township Dump Hanley Road & Cummings Road Walbridge 43465 Libbey-Owens-Ford Co. Plant 6 140 Dixie Hwy.	Union Oil Co., Toledo RefineryL1840 Otter Creek Road43616Oregon43616W/S Ave. Toledo Mun San LandfillLSouth Ave & Maumee River43615Toledo43615Webstrand Corp.L525 Hamilton StreetLToledo43602Westover Corp. San LandfillM820-920 Otter Creek RoadOOregon43616American Cyanamid Co.O12600 Eckel RoadPerrysburgPerrysburg43551Asman's LandfillMRt. 795 & Fostoria RoadMMillbury43447Chrysler Corp. Toledo Machining PlantL8000 Chrysler Drive43551Perrysburg43551Coastal Tank LinesL6622 SR-795KalesWalbridge43619Lake Township DumpLHanley Road & Cummings RoadLWalbridge43465Libbey-Owens-Ford Co. Plant 6L

٠

.....

.

ATMOSPHERIC DEPOSITION

According to the Summary of the Report of the Great Lakes Water Quality Board to the International Joint Commission dated November 1987, atmospheric transport and deposition into the Great Lakes basin, either directly onto the water surface or indirectly into the drainage basin with subsequent transport, has been clearly demonstrated. Going on, this summary report states that even though the magnitude of the input (relative to other sources and pathways) has not been fully defined, the available evidence indicates that atmospheric deposition is a major pathway for contamination of the Great Lakes ecosystem.

Continuing, the summary report states that releases of lead to the atmosphere, primarily from automotive exhausts, have decreased as the use of leaded gasoline in the United States and Canada has decreased, and that atmospheric transport and deposition of certain pesticides (e.g. DDT) into the Great Lakes continues today, even though their use has been banned or severely restricted in both the United States and Canada. These chemicals are still manufactured and used in great quantities in other locations in the world. Short of a worldwide ban on the manufacture, transport and use of these contaminants, appreciable contamination of the Great Lakes ecosystem will continue indefinitely.

The authority to regulate emissions into the atmosphere are based on clean air requirements, but legislative provision to control emissions of persistent toxic substances into the atmosphere need to be incorporated. The Ohio Alliance for the Environment in its March 1987 *Newsletter* reports that since 1987 improvements have been made in reducing the amount of discharge from direct sources of toxic contaminants, but much more research and action is still needed to restore the lakes to a healthy level; and that little is known about the specific effects and possible controls for toxic chemicals into the air.

The Ohio Alliance for the Environment's report goes on to say, that seven million chemical compounds now exist, 30,000 of which are in substantial commercial use; that approximately 1,000 new chemicals are developed each year; that over 1,000 chemicals are suspected carcinogens. It is important to note that some of these chemicals occur naturally, which means that manufactured chemicals are not the only source of toxic substances.

Air emissions of such substances are a concern because the atmosphere serves as a pathway into the environment as a whole. Large lakes such as the Great Lakes, tend to act as a "sink" for pollution from all sources. It has been shown that with the upper Great Lakes, the input of toxic chemicals such as PCBs and lead comes from atmospheric deposition.

The current US EPA and Ohio EPA ambient air quality standards are displayed in Table 52 on the following page. The Toledo Environmental Services Division functions as the air pollution enforcement arm of the Ohio EPA in the Toledo area. This Division was interviewed in order to secure information regarding attainment/non-attainment status regarding the pollutants listed in this table, with such status reported as follows:

			MAXIMUM ALLOWABLE	CONCENTRATION**
POLLUTANT	DURATION	RESTRICTION	PRIMARY	SECONDARY
Particulate Matter - PM10	Annual geometric mean	Not to be exceeded	50 mg/m ³	50 mg/m ³
	24 - hour concentration	Not to be exceeded more than once per year	150 mg/m ³	150 mg/m ³
Sulfur Dioxide	Annual arithmetic mean	Not to be exceeded	80 µm/m ³ (0.03 ppm)	
	24-hour arithmetic mean concentration	Not to be exceeded more than once per year	365 µm/m ³ (0.14 ppm)	
	3-hour arithmetic mean concentration	Not to be exceeded more than once per year		1300 μm/m ³ (0.5 ppm)
Carbon Monoxide	8-hour arithmetic mean concentration	Not to be exceeded more than once per year	10 mg/m ³ (9.0 ppm)	
	1-hour mean concentration	Not to be exceeded more than once per year	40 mg/m ³ (35.0 ppm)	
Ozone	1-hour mean concentration	Not to be exceeded on more than one day per year, average over three years	0.12 ppm (244 µm/m ³	
Nitrogen Dioxide	Annual arithmetic mean	Not to be exceeded	.53 ppm (100 µm/m ³	
Lead	3-month arithmetic mean concentration	Not to be exceeded	1.5 µm/m ³	

TABLE 52 US EPA & OHIO EPA AMBIENT AIR QUALITY STANDARDS*

NOTES:

Primary standards are established for the protection of public health Second standards are established for the protection of public welfare μ m/m³ = micrograms per cubic meter ppm = parts per million mg/m³ = milligrams per cubic meter

* US EPA & Ohio EPA Air Quality Standards are Identical ** 40CFR 50.4 - 50.12

LEAD: Attainment

Lead is a toxic metal released into the atmosphere primarily through the exhaust of automobiles using leaded fuels. Lead accumulates in the human body and can interfere with the blood-forming process, and the normal nervous and renal system functions. Young children are most susceptible to the ill effects of lead. The level of this pollutant has dropped substantially since the early 1970s. Because of enforcement activities related to fuel switching and the further reduction of lead levels in leaded gasoline, the data from recent years shows that the air quality in the area of concern related to lead is approximately 10 times cleaner than the national standard.

NITROGEN DIOXIDE: Attainment

Nitrogen dioxide is a brown gas, formed during high temperature combustion, which reacts with hydrocarbons in the presence of sunlight to produce photo-chemical oxidants or smog. It is also a pollutant in its own right, and can affect lung tissue, reduce resistance to disease, contribute to bronchitis and pneumonia, and aggravate chronic lung disorders. It is also a contributor to acid rain. The level of this pollutant has dropped with no violation ever having been recorded in the area of concern. In fact, routine monitoring of this pollutant was ended in July 1981, but reestablished in 1984 through a scaled-down sampling system in order to keep abreast of any new trend.

OZONE: non-attainment

Ozone is a colorless, pungent, toxic gas, formed by a series of chemical reactions where hydrocarbons, nitrogen oxides from automobiles and other sources, are exposed to sunlight. Ozone is the principal constituent of smog, and is a severe irritant, impairing lung function and aggravating existing respiratory disorders. The level of this pollutant has dropped with only one violation of the standard in 1983, and no violations for succeeding years. Significant reduction in hydrocarbon emissions have taken place in recent years with redesignation expected by US EPA to attainment status.

CARBON MONOXIDE: attainment

Carbon monoxide is a colorless, odorless, tasteless, toxic gas produced by incomplete combustion of fossil fuels. The automobile engine is the main source of this pollutant. It is quickly absorbed by the blood, and reduces the oxygen available to the tissues, impairing visual perception and alertness. Continued exposure to elevated carbon monoxide levels can threaten life. Persons with cardiovascular diseases are especially vulnerable to this type of pollution. The level of this pollutant dropped measurable in 1976 and 1983. Two violations were measured in 1984, but none in the intervening years.

SULFUR DIOXIDE: non-attainment for area east of Route 23 and west of eastern boundary for City of Oregon attainment for remainder area.

Sulfur dioxide is a heavy, pungent, colorless gas formed primarily by the combustion of sulfur-bearing fuels such as coal. It reacts readily with other atmospheric compounds and pollutants to form sulfates, a group of compounds that aggravate respiratory ailments such as bronchitis, emphysema, asthma and heart disease. Sulfates, combined with moisture in the atmosphere, produce acid rain. The area of concern is classified as non-attainment for sulfur dioxide, but there have been no violations, either primary or secondary, of the US EPA Standards since 1979.

attainment for primary sources, but non-attainment secondary sources for areas of East Toledo and Oregon, with attainment for secondary sources in the remainder area.

Particulate matter relates to particles in the air (such as soot, ash, etc.), including non-toxic materials (dust and dirt), as well as toxic substances (lead, asbestos and sulfates). Natural and man-made sources can contribute to adversely affect human respiratory systems to various degrees, depending on particle size and composition. Data show no violation of either primary or secondary standards for 1983, 1984 or 1985 with the Toledo Environmental Service Division petitioning for redesignation to total primary and secondary attainment for the entire area. However, there is a small area, mainly in East Toledo, where the monitoring station is located, that indicated a secondary violation for 1986.

<u>Acid Rain</u>

The Great Lakes National Program Office, US EPA, has operated the Great Lakes Atmospheric Deposition (GLAD) network since early 1981. A precipitation sampling station as a part of GLAD had been located by Toledo Environmental Services Division in Oregon, Ohio at Bay Shore and Stadium Roads, from 1981 through 1985. Due to budget constraints this local sampling station was thereafter eliminated, with the nearest stations being Put-in-Bay, Ohio on South Bass Island, and Mount Clemons, Michigan.

During the period when local precipitation sampling station was in operation, the process consisted of collecting weekly samples and checking for pH and conductivity before sending the sample to the GLAD laboratory for further analysis. The pH of unpolluted rain is about 5.6. Because the pH scale is logarithmic, rain with a pH of 4.6 is ten times as acidic as "normal" rain, while rain with a pH of 3.6 would be 100 times as acidic. Figure 54 graphically displays the quarterly pH averages for the period covering 1981 through 1985 as developed by the Toledo Environmental Services Division. The quarterly averages indicate that rainfall in the Toledo area is often 50 to 100 times more acidic than normal rainfall. The GLAD laboratory analysis for chemical pollutants was available for only one year, therefore, weighted calculations were not conducted.

The area of concern is most fortunate in that the acidic rainfall is buffered by our natural occurring limestone bedrock and local soils which mitigate the ecological effects of acid rain. However, even though most of the ecological effects to the local area are mitigated, there is substantial damage being caused locally by acid rain. Buildings and statues are being corroded, cars rust more quickly and their paints are damaged, and synthetic materials ranging from clothes and nylons to windshield wipers become more rapidly unusable. In addition, heavy metals are leached more readily from structures and soils, so the acid rain may be contributing to the presence of toxic substances in the water. Reduced productivity of farm crops, particularly soybeans, and forest resources has also been linked to acid rain. The buildings, statues, cars, trees and agricultural products all are impacted by the precipitation before it can be neutralized by the soil and bedrock of the area.

Wildlife resources locally may also be experiencing degradation due to the acidity. Many animal resources rely in early spring on temporary ponds and marshes for their breeding areas and important food resources. Most affected are the amphibians and waterfowl that move into these ponds and wetlands even before the snow has melted. Since the ground is still frozen, its ability to neutralize the acidity may be greatly limited. The most acidic precipitation of the year often falls as snow in fall and winter. The spring snow melt may be sending a rush of still acidic water to the ponds and marshes at a critical time. For instance, most salamander species move into the breeding ponds for a brief period, beginning before the ice melts off of the pond. Salamander mortality has been directly linked to the acidity of their breeding ponds. The decline of black duck populations is also now believed to be linked at least in part to the acidity of their feeding ponds when they arrive in early spring. Other migratory waterfowl are also finding reduced abundance of aquatic insects because the spring flush of acidic waters reduces populations at a time when food needs are high in order to fuel migration and prepare for the breeding season.

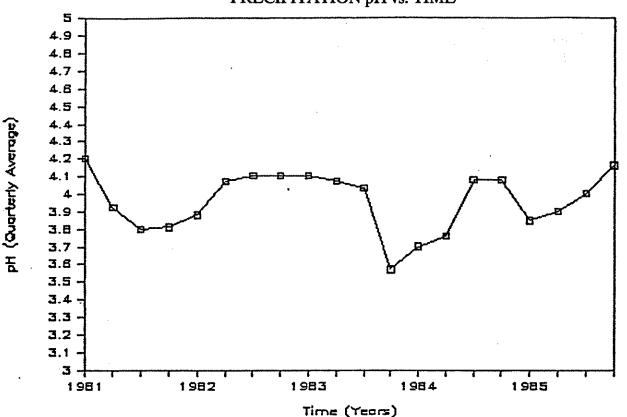


FIGURE 54 PRECIPITATION pH vs. TIME

SOURCE: 1985 ANNUAL REPORT, ENVIRONMENTAL SERVICES AGENCY, CITY OF TOLEDO, p. 20

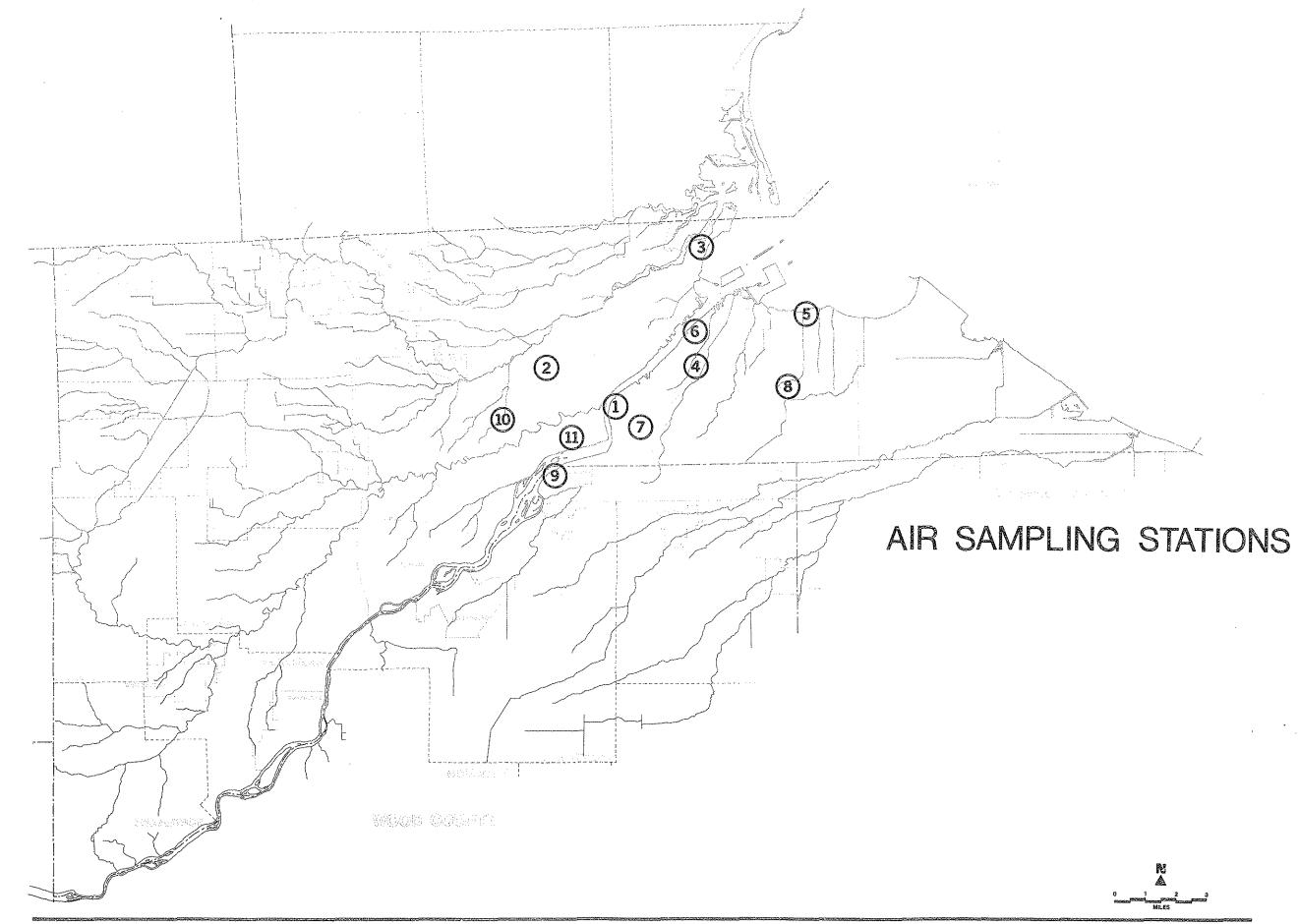
Despite the acidity of rain water in the RAP Area, water in streams is generally alkaline, as shown by Table 53. The pH averages 7.7 to 7.8 for all streams, with the exception of Otter Creek, which is notably more alkaline than any other stream in the area.

TABLE 53 pH VALUES IN RAP AREA STREAMS TESD DATA, 1981-1986¹⁸

Stream				рН			<u> </u>	
<u>Sampled</u>	<0.6	6.09	7.09	8.09	9.09	>10.0	Avg	<u># Samples</u>
All streams	1	7 9	809	486	28	1	7.8	1404
Swan Cr.	0	9	153	54	0	0	7.7	216
Ottawa River	0	27	255	134	4	1	7.7	421
Maumee River	0	23	196	165	3	0	7.8	387
Heilman Dt.	0	1	34	15	0	0	7.7	50
Silver Cr.	0	3	32	19	0	0	7.7	54
Shantee Cr.	0	2	33	19	0	0	7.8	54
Grassy Cr.	0	6	30	20	0	0	7.7	56
Delaware Cr.	1	5	33	16	0	0	7.6	55
Hill Dt.	0	3	36	16	0	0	7.7	55
Otter Cr.	0	0	7	28	21	0	8.7	56

.

TESD Air Sampling


TESD has eleven air sampling network sites. These are described in Table 54 by station number, location, and type of testing performed. The table also includes map numbers which correlate with Figure 55, a map that displays the location of air sampling sites.

Map #	TESD STATION	LOCATION	TESTS PERFORMED
6	· 1	East Side Sewage Pumping Station Lee and Front St.	T.S.P.
7	2	East Side Central School 825 Navarre Ave. at Berry St.	T.S.P
8	3	Oregon Municipal Building 5330 Seaman	T.S.P.
9	4	Rossford Municipal Building 133 Osborn Street	T.S.P.
10	5	60 N. Westwood at Hill (soon moving to U.T. Comm. Tech. and converted to P.M. 10)	T.S.P
11	6 7	1503 Broadway at South	T.S.P.
2	7	2927 Monroe (at Bancroft & Detroit) (heavy traffic intersection)	CO
3	8	2930 - 131st. Street	03
4	8 9	Water Filtration Plant 600 Collins Park	03 S02
5	10	Acid Rain Monitoring Site	Acid Rain
1	11	Toledo Environmentaľ Services Bldg.	T.S.P., SO ₂ ,

		TABLE	54	
TESD	AIR	SAMPLING	NETWORK	SITES

T.S.P.	Total Suspended Particulates
CO	Carbon Monoxide
SO ₂	Sulfur Dioxide
03	Ozone
SO ₂ O ₃ NO ₂	Nitrogen Dioxide
Acið Rain	
PM-10	Particulate Matter - 10 microns (a more refined T.S.P. Test; other T.S.P Sites may be converted at a later date)
Source:	Rick Uscilowski - Chief Chemist, Toledo Environmental Services Div. (TESD)

.,

MAUMEE RIVER REMEDIAL ACTION PLAN-AREA OF CONCERN LOWER

111200

REFERENCES AND SOURCES OF BACKGROUND INFORMATION

- 1. *Great Lakes International Surveillance Plan*, 1986, Part 5, Lake Erie Surveillance Plan prepared by the Lake Erie Task Force for the Surveillance Work Group of the Great Lakes Water Quality Board.
- 2. Revised Great Lakes Water Quality Agreement of 1978 as amended by Protocol signed November 18, 1987, Annex 2.
- 3. Lake Erie Wastewater Management Study, US Army Corps of Engineers, 1973.
- 4. The Northwest Ohio Water Plan 1985 Edition Columbus: Ohio Department of Natural Resources, Division of Water, 1985.
- 5. Existing Water Supply Systems in the Toledo Metropolitan Area Toledo: Toledo Metropolitan Area Council of Governments, 1983.
- 6. Personal communication with water treatment plant operator, February 1988.
- 7. Hull Consulting. "Preliminary Report of Alternative Dredge Disposal Methods for the Toledo, Ohio Harbor." Prepared for Toledo Metropolitan Area Council of Governments, Toledo-Lucas County Port Authority and Ohio Department of Transportation. Toledo: Hull Consulting, 1987.
- 8. Horowitz, J., Adams, J.R. and Bazel, L.A. "Water Pollution Investigation: Maumee and Toledo Area". Prepared for U.S. Environmental Protection Agency. Region V. Toledo: Enviro-Control, Inc., 1975.
- 9. U.S. Department of Commerce. National Oceanic and Atmospheric Administration. Great Lakes Environmental Research Laboratory. "Maumee River Basin Level B Study: Environmental Baseline for Maumee Bay". By A.P. Pinsak and T.L. Meyer. Ann Arbor: NOAA, Great Lakes Environmental Research Laboratory, 1976.
- 10. Toledo-Lucas County Port Authority, Annual Reports 1977 through 1982.
- 11. Commission on Ohioans Outdoors. "Outdoor Recreation In Ohio: Status of Direction". Prepared for Governor Richard F. Celeste. Columbus, 1986.
- 12. Ohio Department of Natural Resources. Office of Outdoor Recreation Services. "Lake Erie Access Study". Columbus: Ohio Department of Natural Resources, 1984.
- 13. Ohio Department of Natural Resources. Office of Outdoor Recreation Services. "1980-1985 Ohio Statewide Comprehensive Outdoor Recreation Plan". Columbus: Ohio Department of Natural Resources, 1980.
- Herdendorf, C.E., The Ecology of the Coastal Marshes of Western Lake Erie: A Community Profile. U.S. Fish and Wildlife Service Biol. Report 85(7,9). pp.4-9. pp.65-74. pp. 104-113. Appendices A,B. 1987.
- 15. Pinsak, A.P. and Meyer, T.L. *Environmental Baseline for the Maumee Bay* Environmental Research Laboratories, National Oceanic and Atmospheric Administration, Ann Arbor, Michigan. pp. 72, (Figure 32. Pollution zones in Maumee Bay, 1929-from Wright, 1955, cited in Pinsak), 1976.
- 16. Ohio Water Quality Standards, Ohio Administrative Code 3745-1, Ohio EPA, draft revisions, August, 1987.
- 17. Water Quality in the TMACOG Region: An Inventory of Monitoring Sites and Sampling Programs, 1970-1988, TMACOG, 1988.

- Toledo Area River and Stream Water Quality Data Report: 1981-1986, November, 1987; Toledo Environmental Services Agency, Toledo Department of Public Utilities, University of Toledo: Moline, Uscilowski, Fraleigh, & Clarke.
- 19. Studies of Sediment, Nutrient, and Pesticide Loading in Selected Lake Erie and Lake Ontario Tributaries, U.S. EPA Region V, 1983.
- 20. Fluvial Transport and Processing of Sediments and Nutrients in Large Agricultural River Basins, U.S. EPA ERL, Athens Georgia, 1984.
- 21. Lake Erie Agro-Ecosystem Program: Sediment, Nutrient, and Pesticide Export Studies, U.S. EPA Great Lakes National Program Office, 1987.
- 22. Analysis of Sediment from Toledo Harbor/Maumee River, Floyd Browne & Associates, 1984 for US Army Corps of Engineers.
- 23. Lucas County Facilities Plan Update, Finkbeiner, Pettis, & Strout, 1983
- 24. Lucas County Facilities Plan Update: Springfield Township (Dorcas Farms/South Hill Park), Finkbeiner, Pettis, & Strout, 1985.
- 25. City of Toledo Combined Sewer Overflow Study, Jones & Henry, Ltd., January, 1978.
- 26. Toledo/Tenmile Creek Service Area Facilities Plan, Jones & Henry Engineers, Ltd., 1976.
- 27. Oregon Facilities Plan, Finkbeiner, Pettis, & Strout, Ltd., September, 1974.
- 28. Oregon Facilities Plan: Harbor View and Seaman Road Areas, Finkbeiner, Pettis, & Strout, Ltd., 1981.
- 29. Trautman, M.B., 1981. The Fishes of Ohio, The Ohio State University Press, Columbus, Ohio 782 p.
- 30. PCB Fish Sampling Data. Ohio EPA(?)
- 31. Guidelines for the Pollutional Classification of Great Lakes Harbor Sediments, US EPA, April, 1977.
- 32. Lake Erie Wastewater Management Study: Methodology Report, US Army Corps of Engineers, March, 1979.
- 33. Water Quality Management Plan: Phosphorus Strategy for Lake Erie, Ohio EPA, Office of the Planning Coordinator, June, 1985
- 34. Nriagu and Simmons, 1984, (p. 200-201)
- 35. Frank, et al, 1977
- 36. Munawar and Thomas, 1984
- 37. Mac and Willford, 1986
- 38. McFarland & Peddicord, 1986
- 39. Chapman, et al, 1986
- 40. Written communication dated March 14, 1988 from Dr. Paul C. Baumann, Leader, Field Research Station, The Ohio State University, Museum of Zoology, (U.S. Fish and Wildlife Services)
- 41. Village of Whitehouse Facilities Plan, Finkbeiner, Pettis & Strout and Lester Poggemeyer, Inc., 1978

- 42. Swan Creek Watershed Improvement Strategy: Watershed Baseline Report, Volume 1 (TMACOG/WQ/85/03), Toledo Metropolitan Area Council of Governments, October, 1985.
- 43. Manual of Practice No 8: Wastewater Treatment Plant Design, Water Pollution Control Federation, 1977. Table 1-V
- 44. Onsite Wastewater Treatment and Disposal Systems, Table 6-13, US EPA Technology Transfer 625/1-80-012, 1980.
- 45. Water Resources Data, Ohio: Water Year 1982, Volume 2. St. Lawrence River Basin, U.S. Geological Survey Water Data Report OH-82-2, 1983, p.34.
- 46. Urban, D.R., J.R. Adams, and T.J. Logan Application of Universal Soil Loss Equation, Appendix I, Lake Erie Wastewater Management Study, U.S. Army Engineer District, Buffalo, 1978, p.129.
- 47. Final Report, Lake Erie Wastewater Management Study, U.S. Army Engineer District, Buffalo, 1982, p.71.
- 48. APPENDIX II: Time Weighted Mean Pesticide Concentrations and Pesticide Loadings at Lake Tributary Monitoring Stations, 1983-1985 Water Years, Water Quality Laboratory, Heidelberg College, 1987. A description of the monitoring and analysis methodology is in Lake Erie Agro-Ecosystem Program: Sediment, Nutrient, and Pesticide Export Studies, Heidelberg College, 1987 Chapter 7.
- 49. Letter from Larry G. Reed, U.S. EPA Region V to Colonel Robert Hardiman, Buffalo District, U.S. Army Corps of Engineers, May 9, 1984.
- 50. Letter from Warren W. Tyler, Director, Ohio EPA to Buffalo District, Corps of Engineers, March 30, 1987.
- 51. TMACOG, City of Toledo, Ohio EPA., Report: "Sediment Reclassification, Toledo Harbor, October 1986, p.13.
- 52. Fraleigh, Peter, Memorandum: "Concerns Regarding Open-Lake Disposal of Dredged Material", January 27, 1987.
- 53. Tyler, Warren. Letter to Col. Daniel Clark, U.S. Army Corps of Engineers, November 21, 1986.
- 54. DePinto, Joseph, et al., Report: "Effect of Open Lake Disposal of Toledo Harbor Dredged Material on Bioavailable Phosphorus", September 30, 1986, p.34.
- 55. Kovacik, Thomas, Ohio Journal of Science: "Information on the Velocity and Flow Pattern of Detroit River Water in Western Lake Erie Revealed by an Accidental Salt Spill", March 1972.
- 56. Herdendorf, C.E., 1969. Water Masses and Their Movements in Western Lake Erie. Ohio Div. Geol. Survey Rept. No. 74 p.7.
- 57. Fraleigh, Peter, Letter to Colonel Daniel Clark and attachments, February 12, 1986.
- 58. Clark, Col. Daniel, Letter to Warren Tyler, Ohio Environmental Protection Agency, December 18, 1986.
- 59. Fraleigh, Peter, Memorandum: "Effects of Open-lake Disposal", January 22, 1987.
- 60. Stevenson, Robert, Memorandum: "Open Lake Disposal of Dredge Material", January 26, 1987.
- 61. TMACOG, City of Toledo, Ohio EPA., Report: "Sediment Reclassification, Toledo Harbor, October 1986.

- 62. Wright, S., 1955. Limnological survey of western Lake Erie. U.S. Fish and Wildlife Service Spec. Sci. Rept., Fisheries, 139. 341 pp.
- 63. Carr, J.F., and J.K. Hiltunen. 1965. Changes in the bottom fauna of western Lake Erie from 1930 to 1961. Limnol. Oceanogr. 10(4):551-569.
- 64. Manny, B.A., J.K. Hiltunen, and J. Judd. 1987. Survey of macrozoobenthos in western Lake Erie, 1982. U.S. Fish and Wildlife Serv., National Fish. Center, Ann Arbor, Mich., preliminary data from unpublished report.
- 65. Mizera, J.J. 1981. Distribution and entrainment of larval fishes in western and central Lake Erie. Ohio State Univ., Columbus, Center for Lake Erie Area Res. Tech. Rept. No. 215. 225 pp.
- 66. Heniken, M.R. 1977. Distribution and abundance of larval fish in western Lake Erie. Ohio State Univ., Columbus, Center for Lake Erie Area Res. Tech. Rept. 69, 95 pp.
- 67. *Federal Register*, 9/16/84, pg 37,998; 3/7/85, pp 9362-66; 8/12/85, pp 35249-52; 8/29/85, pp 35200-02; 10/21/87, page 39,240.
- 68. 1980 Census, STF 3A Table 108
- 69. City of Toledo, Ohio: Report on Regulator Telemetering, Jones & Henry Engineers, Ltd., November, 1973.
- 70. Report of Investigation: Combined Sewer Pollution: City of Toledo, Earthview, Inc., Environmental Scientists, February, 1973.
- 71. Combined Sewer Overflow Study: Maumee, Ohio; Lucas County, Ohio, Finkbeiner, Pettis, and Strout, Ltd., October, 1982.
- 72. Northwood Facilities Plan, Finkbeiner, Pettis, and Strout, Ltd., 1979.
- 73. City of Toledo Combined Sewer Overflow Study, Jones & Henry Engineers, Ltd., Update: April, 1987.
- 74. Perrysburg Segmented Facilities Plan, Finkbeiner, Pettis, & Strout, Ltd., 1980.
- 75. National Pollution Discharge Elimination System (NPDES) permit D702*CD issued to the City of Perrysburg 6/29/82. Current permit is 2PD00002*DD.
- 76. Groundwater Quality Baseline Report, Toledo Metropolitan Area Council of Governments, June, 1982
- 77. Home Sewage Disposal Priorities, TMACOG, 1983
- 78. 20,000 Leaks Under Ohio: Environmental and Health Threats from Leaking Underground Storage Tanks in Ohio, Ohio Environmental Council, August, 1988.

GLOSSARY

305b	A biennial report from the state to US EPA which describes the quali- ty of the water of the state. Specifically, whether it meets the "fishable and swimmable" criteria mandated by the Clean Water Act. The term "305b" refers to the section of the Act requiring this report.
μg/l Ag As	Micrograms/liter (parts per billion) Silver
As	Arsenic
BOD, BOD ₅	<u>Biochemical Oxygen Demand</u> . This is a water quality parameter which serves as an indirect measure of the amount of organic matter (food) available for bacteria in a water sample. It measures the amount of oxygen, in pounds, needed to support the growth of bacteria in a water sample over a specified period of time; usually 5 days.
Ba	Barium, a "heavy metal"
Be	Beryllium, a "heavy metal"
BWQR	Biological Water Quality Report: a detailed water quality survey of a stream reach conducted by OEPA. BWQRs were formerly known as CWQRs (Comprehensive WQR).
Bypass	A point in a sanitary sewer system where untreated sewage can over- flow directly to a stream instead of continuing to the treatment plant.
С	Carbon
CDF	<u>Confined</u> <u>Disposal</u> <u>Facility</u> . Diked areas in Maumee Bay which are used to hold and dewater sediments dredged off the bottom of the
	shipping channel.
CERCLA	<u>Comprehensive</u> <u>Environmental</u> <u>Response</u> , <u>Compensation</u> , and <u>L</u> iability
CENCLA	<u>Act</u> of 1980, more commonly known as "Superfund," which provides authority for Federal cleanup of abandoned toxic waste sides and response to releases of hazardous substances into the environment.
CLEAR	<u>Center for Lake Erie Area Research</u> , a Lake Erie water quality monitor- ing program, sponsored by Ohio State University.
CN	Cyanide
COD	<u>Chemical Oxygen Demand</u> . An indirect measurement of the amount of
	carbon (food) in a water sample. This test is somewhat similar to the BOD test, in that it measures the pounds of oxygen needed to use up (oxidize) the carbon in a water sample. The COD uses chemicals to determine the amount of oxygen needed, while the BOD test is a biological test.
CSO	Combined sewer overflow
CaCO ₃	Calcium carbonate: "scale." Used as a standard in measuring water
04003	hardness.
Cd	Cadmium, a "heavy metal"
CI,CI ⁻	Chlorine, chloride. Chlorine is a poisonous gas commonly used to kill
	germs in treated sewage or drinking water. Chloride is an electrolyte, a "salt" (sodium chloride), and is not a disinfectant
CoE ·	US Army Corps of Engineers
Combined sewage	Sanitary sewage and stormwater combined. Ideally, sanitary sewage and stormwater are carried in separate pipelines. In many inner-city areas, however, there is only one sewer system, and it carries com-
	bined sewage.
Cond.	Conductivity: a specific laboratory test for determining the conductivi- ty of a water sample. It indicates the quantity of dissolved electrolytes
<i>c</i>	in a sample.
Cr	Chromium, a "heavy metal"

Maumee Basin Remedial Action Plan Investigation Report

155

....

^

Cu	Copper
DO	Dissolved oxygen. Amount of oxygen dissolved in a water sample (in
	mg/l or ppm). DO is necessary for the survival of fish and other
	aquatic life
EPA	Environmental Protection Agency. US EPA is the Federal agency,
	and Ohio EPA is Ohio's statewide equivalent.
Eutrophication	A natural aging process generally describing the fertility (mainly
-	aquatic plant productivity) of lakes. This process is speeded up if a
	lake receives an excess amount of nutrient pollutants, especially
	phosphorus.
F	Fluoride
Fe	Iron
Fecal Coliform	Bacteria which when found in large numbers in a water sample, indi-
	cate the presence of untreated sewage.
HUD	Housing and Urban Development. A Federal Agency which provides
	funding to assist cities and villages with housing and infrastructure
	problems
Hg	Mercury, a "heavy metal"
Hg I/I	Infiltration and Inflow: excess storm and/or ground water entering a
7	sanitary sewer system
ICI	Invertebrate Community Index: a numerical measure of water quality
	as reflected by a stream's ability to support aquatic life
IJС	International Joint Commission
K	Potassium
kg	Kilogram(s): 1000 grams. A kilogram is slightly more than two
5	pounds.
LEWMS	Lake Erie Wastewater Management Study
LM	Lake mile. How many miles downstream (and out into Lake Erie) a
	given point is from the mouth of the Maumee
Leachate	Liquid that leaks out of a landfill or dump; usually ground or surface
	water highly contaminated with wastes from the dump or landfill.
MBAS	Methylene Blue Active Substance: a measure for the presence of
	surfactants in water or wastewater. Surfactants ("surface- active
	agents") are large organic molecules that cause water to foam or
	produce suds when agitated.
MG	Million gallons
mg	Milligram(s): a thousandth of a gram. There are 454 grams to a
0	pound.
mg/kg	Milligrams per kilogram
mg/l	Milligrams per liter (= ppm)
mgd	Million gallons per day
mÍ	Milliliter(s): a thousandth of a liter. A liter is slightly less than a quart.
MOE	(Ontario) Ministry of the Environment. Equivalent of EPA.
MP	Mile point. How many miles upstream (above) the mouth of a stream
	a given point is. See RM.
Methane	Natural gas. Formed by the decomposition of organic matter in the
•	absence of oxygen.
Mn	Manganese
Ν	Nitrogen: one of the chemical elements which in certain forms is a
	nutrient necessary for life.
NH ₃	Ammonia: a form of nitrogen, which is a pollutant.
NO_2^{\vee}	Nitrite(s): a form of nitrogen, which is a pollutant.
NO ₃	Nitrate(s): a form of nitrogen, which is a pollutant.
ng/ğ	Nanograms/gram. "Nano" is a prefix which means "one billionth", or
	10^{-9} . ng/g=ppb.

Maumee Basin Remedial Action Plan Investigation Report

156

2

NaSodiumNiNickel, a "heavy metal"O/GOil and grease. In water quality monitoring, refers to a specific chemical test for amount of oils in a sample.ODNROhio Department of Natural ResourcesOEPAOhio Environmental Protection AgencyPPPPhosphorus. Considered the critical nutrient in the pollution of the Great Lakes. By limiting amount of phosphorus discharged to Lake Erie, the lake's eutrophication can be controlled.PAHPolychlorinated Biphenyls. Organic chemicals which, during the 50 years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulang fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A signifi- cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and turans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfilk.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed	NPDES	National Pollutant Discharge Elimination System. Refers to a permit which is required in order to discharge wastewater to a stream. This permit dictates how clean the water must be before it can be dis-		
Ni O/GNickel, a "heavy metal" Oli and grease. In water quality monitoring, refers to a specific chemical test for amount of oils in a sample.ODNR ODINR ODINE ODINE ODINE 	X 7	charged.		
O/GOil and grease. In water quality monitoring, refers to a specific chemical test for amount of oils in a sample. ODNR Ohio Department of Natural Resources OHio Department of Potection Agency Phosphorus. Considered the critical nutrient in the pollution of the Great Lakes. By limiting amount of phosphorus discharged to Lake Erie, the lake's eutrophication can be controlled.PAH PCBPolychiorinated Biphenyls. Organic chemicals which, during the 50 years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs care a suspect carcinogen. A signific cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wates were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's				
 cal test for amount of oils in a sample. ODNR Ohio Department of Natural Resources OEPA Ohio Environmental Protection Agency P Prosphorus. Considered the critical nutrient in the pollution of the Great Lakes. By limiting amount of phosphorus discharged to Lake Erie, the lake's europhication can be controlled. PAH Polyncicar Aromatic Hydrocarbons Lead, a "heavy metal" PCB Polychorinated Biphenyls. Organic chemicals which, during the 50 years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from diclectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A significant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs from dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills. PEMSO Planning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream segments, modeling pollution sources, and their effects on water quality. Related watershed, such a streament Study (LEWMS).³ LRIS watersheds are usually, but not always, the same as TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds are usually. Jut not always, the same as TMACOG is. pH A measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).				
ODNR Ohio Department of Natural Resources OEPA Ohio Environmental Protection Agency P Phosphorus. Considered the critical nutrient in the pollution of the Great Lakes. By limiting amount of phosphorus discharged to Lake Erie, the lake's eutrophication can be controlled. PAH Polynchear Aromatic Hydrocarbons Pb Lead, a "heavy metal" PCB Polychiorinated Biphenyls. Organic chemicals which, during the 50 years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A significant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills. PEMSO Planning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream segments, which are generally a subset of the PEMSO watersheds. The third system is L and Resources. And their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PLMSO watersheds. The third system	0/0			
OEPA P Ohio Environmental Protection Ågency Phosphorus. Considered the critical nutrient in the pollution of the Great Lakes. By limiting amount of phosphorus discharged to Lake Erie, the lake's eutrophication can be controlled. PAH Polynuclear Aromatic Hydrocarbons Lead, a "heavy metal" PCB PCB Polychlorinated Biphenyls. Organic chemicals which, during the 50 years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from diclectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A signifi- cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills. PEMSO Planning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS) ⁵ - LIS watersheds are usually, but ot always, the same as TMACOG's. PM <th <="" colspan="2" td=""><td>ODNR</td><td></td></th>	<td>ODNR</td> <td></td>		ODNR	
P Phosphorus. Considered the critical nutrient in the pollution of the Great Lakes. By limiting amount of phosphorus discharged to Lake Eric, the lake's europhication can be controlled. PAH Polychlorinated Biphenyls. Organic chemicals which, during the 50 years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and hear resistance. PCBs are a suspect carcinogen. A significant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamining and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream segments, which are generally a subset of the EMSO watersheds, which are generally a subset of the EMSO usersheds, which are generally a subset of the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's. pH A device <i>Conservation and Recovery Act</i> of 1976. Deals with the transport, storage, treatment plant. pph Parts per million (= mg/l) RCRA Resource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities. PM Parts per million (= mg/l) RCRA </td <td></td> <td></td>				
PAH PAH PbGreat Lakes. By limiting amount of phosphorus discharged to Lake Brie, the lake's eutrophication can be controlled. Polynuclear Aromatic Hydrocarbons Lead, a "heavy metal" PCBPCBPolychlorinated Biphenyls. Organic chemicals which, during the 50 years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A signifi- cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds are usually, but not always, the same as TMACOG's.PHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).PDWParts per billion (= mg/l) Parts per billion (= mg/l)RCRAResource Conservation and Recovery Act of 1976. D				
PAH PAH Pb Pb PcBErie, the lake's eutrophication can be controlled. Polynuclear Aromatic Hydrocarbons Lead, a 'heavy metal" PCBPolynuclear Aromatic Hydrocarbons Lead, a 'heavy metal" Polychlorinated Biphenyls. Organic chemicals which, during the 50 				
PbLead, a "heavy metal"PCBPolychlorinated Biphenyls. Organic chemicals which, during the 50 years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A signifi- cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and hurans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).pbParts per million (= mg/l) Parts per million (= mg/l) Parts per million (= mg/l) Parts per million (= mg/l)<				
PCBPolychlorinated Biphenyls. Organic chemicals which, during the 50 years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A signifi- cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erfe Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).pbPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a muni				
years they were manufactured and used, an estimated 400 million pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A signifi- cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOGS.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic). Public)-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant. Parts per million (= mg/l) RCRA Resource Conservation and Recovery		Lead, a "heavy metal"		
Pounds entered the environment, according to US EPA Hazardous Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A signifi- cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant. Parts per billion (= mg/l) Parts per million (= mg/l) Resource Conservation and Recovery Act of 1976. Deals with the trans- port, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the reg	PCB			
Waste laboratory. Their use ranged from dielectric oils to carbonless paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A signifi- cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furnas, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).ppbParts per billion (= $\mu g/1$) ppmpptParts per billion (= $\mu g/1$) Parts per million (= $mg/1$) RCRARMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass comb				
 paper production. A colorless liquid, it was used as an insulating fluid in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A significant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills. PEMSO PleMSO system, which Ohio EPA uses for classifying stream segments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Eric Wastewater Management Study (LEWMS).³ LRIS watersheds are usually, but not always, the same as TMACOG's. pH A measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic). POTW Publicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant. ppb Parts per million (= mg/l) Resource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities. RM Regulator A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypasse combined sewage when the system is overloaded from stormwate		Waste laboratory Their use ranged from dielectric oils to carbonless		
in electrical equipment: e.g., transformers, capacitors, because of its stability and heat resistance. PCBs are a suspect carcinogen. A signifi- cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).pDTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppb ppmParts per million (= mg/l) RCRAResource Conservation and Recovery Act of 1976. Deals with the trans- port, storage, treatment, or disposal of hazardous wastes and their associated facilities.RM RegulatorRiver mile: how many miles upstream (above)		paper production. A colorless liquid it was used as an insulating fluid		
stability and heat resistance. PCBs are a suspect carcinogen. A significant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPIAnning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).pDVPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per billion (= mg/l) Rever mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry w		in electrical equipment: e.g. transformers capacitors because of its		
cant health impact has been linked to incomplete combustion of PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWNS).* LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).pbPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= mg/l) RcRARM RegulatorResource Conservation and Recovery Act of 1976. Deals with the trans- port, storage, treatment, or disposal of hazardous wastes and their associated facilities.RM RegulatorRiver mille in operated by a city waster is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses durin		stability and heat resistance. PCBs are a suspect carcinogen. A signifi-		
PCBs. The oxidation of PCBs form dioxins and furans, the most toxic of all man-made substances. They have been found in measurable concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant. Parts per billion (= mg/l) Parts per million (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the trans- port, storage, treatment, or disposal of hazardous wastes and their associated facilities.RM RegulatorRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is		cant health impact has been linked to incomplete combustion of		
concentrations in waterways and sediments throughout the world, and are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).pDTWPotTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant. Parts per billion (= $\mu g/l$) Parts per billion (= $\mu g/l$)ppbParts per billion (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the trans- port, storage, treatment, or disposal of hazardous wastes and their associated facilities.RM RegulatorRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses dur		PCBs. The oxidation of PCBs form dioxins and furans, the most toxic		
are widely-spread contaminants of fish and wildlife resources. PCB contamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).pOTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant. Parts per million (= $\mu g/l$) Parts per million (= $\mu g/l$) Parts per million (= $\mu g/l$) RCRARMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather				
PEMSOcontamination began in an era when industrial wastes were disposed of by flushing them directly into waterways, local sewage treatment plants, or landfills.PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).pDTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant. Parts per billion (= $\mu g/1$) Parts per million (= $mg/1$) RCRAResource Conservation and Recovery Act of 1976. Deals with the trans- port, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather		concentrations in waterways and sediments throughout the world, and		
PEMSOof by flushing them directly into waterways, local sewage treatment plants, or landfills. Planning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic). POTWPOTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant. Parts per billion (= μg/l) Parts per million (= mg/l) RCRARMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather		are widely-spread contaminants of fish and wildlife resources. PCB		
PEMSOplants, or landfills. Planning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)RCRARiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather				
PEMSOPlanning and Engineering Data Management System for Ohio (PEMSO) system, which Ohio EPA uses for classifying stream seg- ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)RCRARiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather				
 (PEMSO) system, which Ohio EPA uses for classifying stream segments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS).³ LRIS watersheds are usually, but not always, the same as TMACOG's. pH A measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic). POTW Publicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant. ppb Parts per billion (= μg/l) PATS per billion (= mg/l) RCRA Resource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities. RM River mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather 	PEMSO			
ments, modeling pollution sources, and their effects on water quality. Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppb ppmParts per billion (= $\mu g/l$) Parts per million (= mg/l)RM RegulatorRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather	I EMIOO	(PEMSO) system, which Ohio EPA uses for classifying stream seg-		
Related watershed classification systems: TMACOG uses smaller watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather				
watersheds, which are generally a subset of the PEMSO watersheds. The third system is Land Resources Information System (LRIS), developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather				
developed for the 208 program, and further defined for the Lake Erie Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RM RegulatorRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather		watersheds, which are generally a subset of the PEMSO watersheds.		
Wastewater Management Study (LEWMS). ³ LRIS watersheds are usually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)PCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather		The third system is Land Resources Information System (LRIS),		
pHusually, but not always, the same as TMACOG's.pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)PCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather		developed for the 208 program, and further defined for the Lake Erie		
pHA measure of acidity or alkalinity, on a scale of 1 to 14. Neutral is 7.0; lower values are acidic, and higher values are alkaline (basic).POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RM RegulatorRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather		Wastewater Management Study (LEWMS). ³ LRIS watersheds are		
POTWlower values are acidic, and higher values are alkaline (basic).PUblicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather	TT			
POTWPublicly-Operated Treatment Works. A wastewater treatment facility operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l) RCRAParts per million (= mg/l) Resource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather	pri			
operated by a city, village, or county that treats primary domestic sewage. Usually refers to a municipal sewage treatment plant.ppbParts per billion (= $\mu g/l$) Parts per million (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather	POTW			
ppbsewage. Usually refers to a municipal sewage treatment plant.ppmParts per billion (= $\mu g/l$)PARCRAParts per million (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather	IOIW			
ppbParts per billion (= $\mu g/l$)ppmParts per million (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather				
ppmParts per million (= mg/l)RCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather	daa			
RCRAResource Conservation and Recovery Act of 1976. Deals with the transport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather				
RMport, storage, treatment, or disposal of hazardous wastes and their associated facilities.RMRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather	RCRA ·			
RM RegulatorRiver mile: how many miles upstream (above) the mouth of a stream A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather		port, storage, treatment, or disposal of hazardous wastes and their		
Regulator A device used to control the bypass of untreated combined sewage to a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather				
a stream. The purpose of the regulator is to allow the system to bypass combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather				
combined sewage when the system is overloaded from stormwater; but to prevent bypasses during dry weather	Regulator			
but to prevent bypasses during dry weather				
S.D. Sewer District				
D'D' DEMET DI2HICI	SD			
	5.D.	Sewer District		

Maumee Basin Remedial Action Plan Investigation Report

157

a.

,

^

SO ₄ SS	Sulfate(s) Suspended solids: in water quality sampling, the weight of solids (in
Se Superfund TDS	mg) suspended in a milliliter (ml) of water. Selenium See CERCLA Total dissolved solids
TESD	Toledo Environmental Services Division: a division of the City of Toledo which is responsible for performing air and water quality monitoring in Toledo. Formerly TESA (Agency).
TKN	Total Kjeldahl Nitrogen: a specific chemical test used to determine how much of certain forms of nitrogen are in a water sample. It in- cludes organic and ammonia nitrogen, but excludes nitrites and ni- trates.
TMACOG	Toledo Metropolitan Area Council of Governments: regional plan- ning agency for Lucas, Wood, Ottawa, Sandusky and Erie Counties in Northwest Ohio, and Erie, Bedford, and Whiteford Townships in Monroe County, Michigan
tpy Turb.	Tons per year Turbidity: a measure of whether or not water is clear. When used in terms of water quality monitoring, it refers to a specific test used to quantity how turbid a water sample is.
USGS	United States Geological Survey. Federal agency involved in detailed mapping of the U.S., and surface and groundwater monitoring.
WQ WTP	Water quality Water Treatment Plant. Usually refers to a municipal plant for pro-
WWH	ducing city drinking water. Warmwater Habitat: a stream classification used by Ohio EPA to set the water quality standards for a stream. Warmwater standards are
WWTP	not as stringent as Coldwater. Wastewater Treatment Plant. Usually refers to a municipal treatment facility, and often used interchangeably with "Sewage Treatment Plant"
Zn	Zinc, a "heavy metal"

•