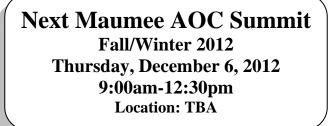


Maumee AOC Summit Spring/Summer 2012

Wednesday, May 2, 2012 9:00am to 12:00pm University of Toledo Lake Erie Center 6200 Bayshore Rd., Oregon, Ohio 43618 (light breakfast will be provided)

AGENDA


- 9:00-9:15am Welcome and Introductions, also MRAC Report (Patrick Lawrence)
- 9:15-9:30am Report on PCS Activities (Kristina Patterson)
- 9:30-11:20am Partner Presentations

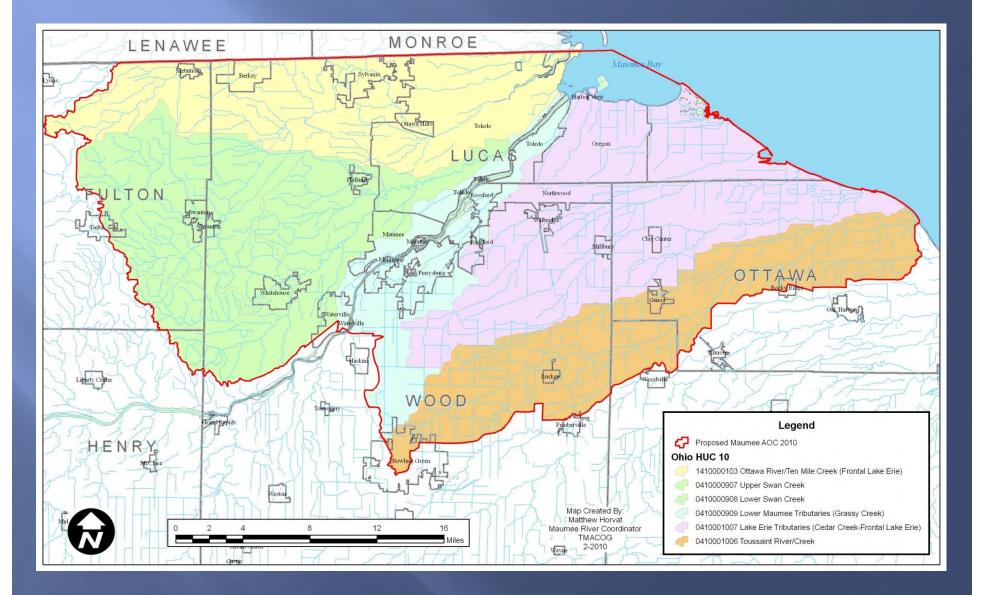
9:30 - 10:10	Lake Erie Tributaries and Lower Maumee River Tributaries TMDL (Beth Risley, Ohio EPA and Bruce Cleland, TetraTech)	
10:10 - 10:30	Eastern Maumee AOC Wetland & Riparian Inventory and Restoration Plans (<i>Tim Walters, EnviroScience</i>)	
10:30 - 10:50	Reconnecting Wetlands to Crane Creek and Lake Frie	
10:50 - 11:05	Interactions Between Human Decisions, Biophysical Processes, and Ecosystem Services: Maumee Watershed and Bay (<i>Jay Martin, Ohio State University</i>)	
11:05 -11:20	Climate Change and Watershed Decision-Making Project (Elizabeth LaPorte, University of Michigan)	

- 11:20-11:30am Break and Networking
- 11:30-12:00pm Agency Reports

11:30 - 11:40	US EPA Report (Frank Anscombe, US EPA RAP Liaison)
11:40 - 11:50	Ohio EPA Report (Cherie Blair, Ohio EPA RAP Coordinator)
11:50 - 12:00	TMACOG Report (Matt Horvat, Lower Maumee River Coordinator)

- 12:00-12:25pm Additional Partner Reports/Project Updates
 - Open floor for project sharing by any other partners (*i.e. Duck and Otter Creek Partnership, City of Toledo, Metroparks, TNC, DU, etc.*)
- 12:25-12:30pm Closing comments and announcements

Ohio EPA Report on Activities in the Maumee AOC


Maumee AOC Spring Summit 2012 University of Toledo Lake Erie Center May 2, 2012

Today's Presentation

- Assessments & TMDLs
- Ohio EPA Projects
- 319 Projects
- Ottawa River Consumption Advisory
- GLRI Needs
- Report from US EPA Liaison

Maumee Area of Concern

Sampling to Assess a Watershed for TMDLs

- Physical habitat
- Water chemistry
- Sediment chemistry

- Biological community health
 - examine & count fish & aquatic insects

Assessments and TMDLs in the Maumee AOC

- Maumee R (lower) Tributaries (assessed in '06) & Lake Erie Tributaries (assessed in '08)
 - Report do soon be released for public comment
 - Created by Tetra Tech using Ohio EPA collected data
- Tenmile Crk/Ottawa River (assessed in 2011)
 - Expect TSD Spring '13; TMDL Rpt expected Winter '13
- Maumee River (Large River Unit-mainstem only assessing in 2012)
 - Study plan and sampling sites being finalized
 - Expect TSD Spring '14; TMDL Report timing has not been determined

Ohio EPA Projects Benefitting the Maumee AOC

Nearshore Monitoring Project

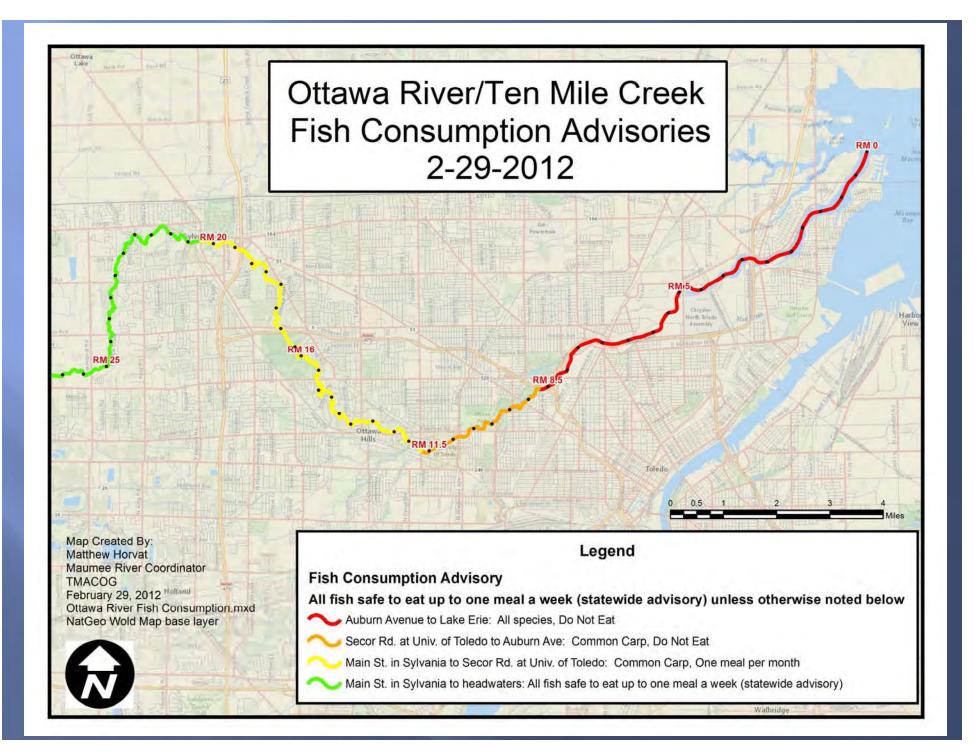
- Goal: Track trends and develop biological index for lacustuary/nearshore areas
- In second year of three years of sampling
- Collecting water, sediment, fish, nutrients, phytoplankton, etc.

Brown Bullhead Study

- Goal: Determine if BUI 4 is impaired in Ohio AOCs
- Contracted with MBI & West Virginia Histology lab to do work
- Collecting fish samples for all river mouths in three AOCs
- Expect sampling to begin late Summer/early Fall 2012

New Boat for NWDO

- Sampling Lake Erie in a 19' boat without cover
- Getting new 24' vessel with a cabin soon (via grant funds)
- Safer for staff, protection of gear and equipment
- Should be able to sample more places, more often


Ohio EPA 319 Grant Projects

- Summer 2012 Ohio EPA conducted pre-/postproject sampling for 319 grants
 - Report available in report on Ohio EPA web site: http://epa.ohio.gov/portals/35/documents/319_SWIF_TSD_2011.pdf
 - Sites in report include:
 - Toledo Botanical Gardens Hill Ditch & Crosby Lakes
 - University of Toledo mainstem Ottawa R. on Campus
 - TMACOG mainstem Ottawa River in Ottawa Hills
 - Also: Camp Miakonda Ottawa R. at former dam site
- New 319 project with FFY12 funding
 - TMACOG stream and restoration project on Swan Creek

Changes to the Ottawa River Consumption Advisory

Evaluation of Consumption Advisory

- Summer 2011 Ohio EPA collected fish tissue samples from Auburn Ave to Main St (in Sylvania)
- Ohio EPA evaluated the data in conjunction with the Ohio Dept of Health
- On Feb., 29, 2012 Advisory was reduced and signs were authorized for removal
 - Auburn Ave. to Lake Erie
 - All species, Do Not Eat (did not collect data here, expected in 2014)
 - Secor Rd. at University of Toledo to Auburn Ave.
 - Common Carp, Do Not Eat
 - Main St. in Sylvania to Secor Rd. at University of Toledo
 - Common Carp, One meal per month

FFY 2013–14 GLRI Projects

I Need Your Help!

- US EPA needs to submit budget requests/placeholders for FFY13 & 14 GLRI budget
- Ohio EPA is reworking its Delisting Targets
- Current Maumee BUI status can not be determined until Targets are updated
- BUT they still need a list of projects!
- What does our AOC need? What shall I tell them to hold money for us for?
- □ I have to tell US EPA something next week!

From US EPA Liaison Frank Anscombe

- Sorry he couldn't be here
- **GLNPO** is busy preparing for RFAs
- US EPA will the awarding \$20 million
- Wanted to remind everyone
 - Deadline is May 24
 - Webinars
 - [•] Thu, May 3, 2012 2:00 PM 4:00 PM CDT
 - Mon, May 14, 2012 10:00 AM 12:00 PM CDT

Questions

Cherie Blair Maumee RAP Coordinator Ohio Environmental Protection Agency 419-373-3010 Cherie.Blair@epa.state.oh.us

CLIMATE IMPACTS ON GREAT LAKES WATER QUALITY

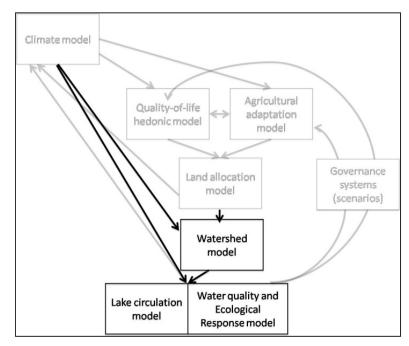
Carnegie Institution for Science, Grace College, Heidelberg University, Limno-Tech, Inc., University of Michigan, and University of Toledo

Project Focus: Western Lake Erie

Key Question:

What are the possible effects of climate-change-induced extreme events on water quality and ecology in the Great Lakes system, and what management strategies will be effective in addressing these changes?

Project Components & Leaders


- 1. Hydrologic and Ecological Response Donald Scavia, *Co-PI*
- 2. Regional Climate and Extreme Events Alison Steiner, *Co-PI*
- 3. Land Use Change and Water Governance Michael Moore, *Co-PI*
- 4. Broader Impacts (Outreach/Education) Elizabeth LaPorte, Senior Personnel

Principal Investigator: Anna Michalak

Hydrological and Ecological Response

- How do changes in *climate*, *land-use*, *and Dreissenids* (*invasive mussels*) affect the amount of phosphorus reduction needed to avoid harmful algal blooms?
- How do increases in *intense* storms influence the DRP:TP (dissolved reactive phosphorus; total phosphorus) in river runoff?
- Which changes in precipitation patterns most effect altered eutrophication patterns and algal species shifts?

Hydrological and Ecological Response

Data Collection

Lake Monitoring:

- Microcystis abundance and nutrient concentration
- Lyngbya growth studies High Resolution DRP measurements (Cycle P):
- Test unit on Maumee River, 2011
- Deploy in western Lake Erie, 2012 (storm events)

River Monitoring:

 Continuation of Heidelberg data collection on Maumee, Sandusky, Raisin, Cuyahoga and Grand

Hydrological and Ecological Response

Modeling

Watersheds:

- Controls on TP and SRP runoff
- Climate effects
- Land use effects

Western Basin of Lake Erie:

- 2011 Microcystis bloom
- 3-D grid-based water physics, chemistry and biology

External P loads	- uptoke - release (decay)
<u>Cladophora</u> t benthic algor	Phytoplanhton Zoops
	for hit
Dreiss	nids

Regional Climate and Extreme Events

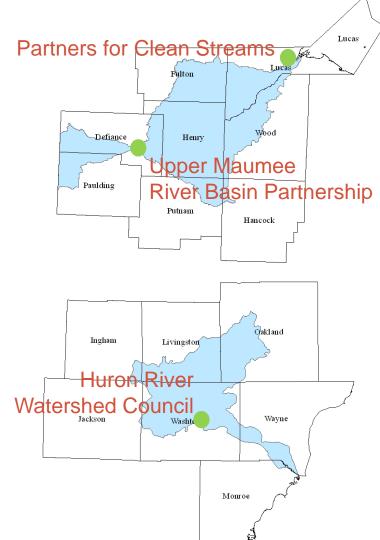
- Present-day Baseline Climate
- Future-climate Baseline
- Future-climate Land Cover
- Develop an analytical system for predicting outcomes and feedbacks --- using a complex array of factors:
 - Precipitation, runoff and evapotranspiration
 - Soil temperature
 - Lake-effect precipitation

Land Use Change & Water Governance Goals:

 Understand current water management approaches and use of climate information to build baseline database

- Assess adaptive capacity of management systems & develop tool for self assessment
 - Adaptive capacity: Economic, political/organizational, human, and social capital
- Understand role of coupled water management systems & climate knowledge (this project) in building adaptive capacity

Water Governance - Partners


Focus:

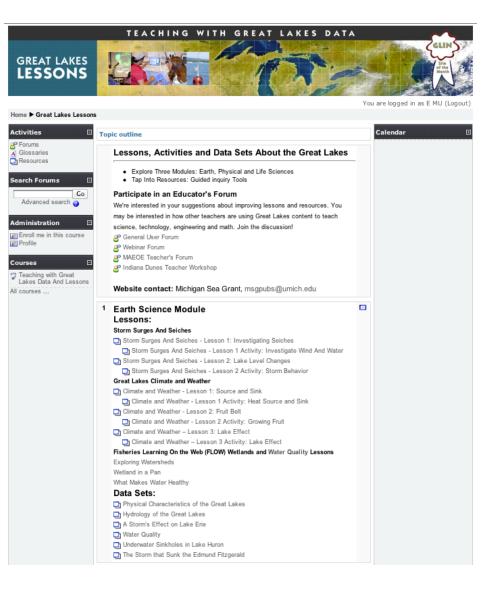
Developing partnerships with key management groups/agencies in two watersheds OH and MI:

Maumee River/Lake
 Erie

TMACOG, Partners for Clean Streams, and Upper Maumee River Basin Partnership, State EPA/ODNR

Huron River/Lake Erie
 Huron River Watershed
 Council, State MDEQ

Outreach – Broader Impacts


Goals

- Promote training, teaching and learning
- Leverage science-based information
- Integrate Great Lakes research into K-12 classrooms – addressing STEM
- Public outreach about the project activities and outcomes

Education

- Enhancing Existing Tools
- New educational materials about developing and applying models (lesson, activity, data sets)
- Teacher Outreach New Tech High School (underrepresented groups)

Outreach

- Leveraging science about climate and water quality
- Promoting sustainable economic development, balancing environmental and ecological issues with economic issues
- Tapping into university researchers
- Identifying community needs

Questions?

URLs

 Project Website: <u>www.miseagrant.umich.edu/nsfclimate</u>

 Teaching with Great Lakes Data: <u>www.greatlakeslessons.com</u>

Contacts:

- Mary Anne Evans, mevans@umich.edu
- Christine Kirchhoff, orange@umich.edu
- Elizabeth LaPorte, elzblap@umich.edu

"Climate change is not about a bunch of granolamunching hippies with nothing better to do than fabricate doomsday scenarios about the environment." — Tom Henry, *The Blade*

Ohio's Total Maximum Daily Loads (TMDL) Process

Maumee River (lower) Tributaries and Lake Erie Tributaries Watersheds (PART 1)

Environmantal Protection Agency

Beth Risley

Today's Discussion

- Ohio's TMDL Process
- Maumee River (lower) tributaries and Lake Erie Tributaries TMDL
- Implementation ideas

Today's Discussion

- Ohio's TMDL Process
- Maumee River (lower) tributaries and Lake Erie Tributaries TMDL
- Implementation ideas

Why do we do TMDLs?

Clean Water Act

- Clean Water Act: to restore and maintain the "chemical, physical, and biological integrity of the Nation's waters."
- TMDLs originate in CWA Section 303: provides a safety net for times when technological controls don't work

Ohio's CWA Responsibilities

- States decide goals for water quality
- States monitor to determine whether waters are meeting the goals
- States report on water quality and prioritize problems
- For waters not meeting the goal, states prepare a Total Maximum Daily Load

What is a T-M-D-L?

Environmantal Protaction Agancy

T-M-D-what?

- Local focus
- Definition: The maximum amount of a pollutant a waterbody can contain and still maintain water quality standards (goals).
- Also known as...
 - Pollution budget
 - Clean-up plan

background load + point source load

- + nonpoint source load
- + margin of safety
- + allowance for future growth

TMDL

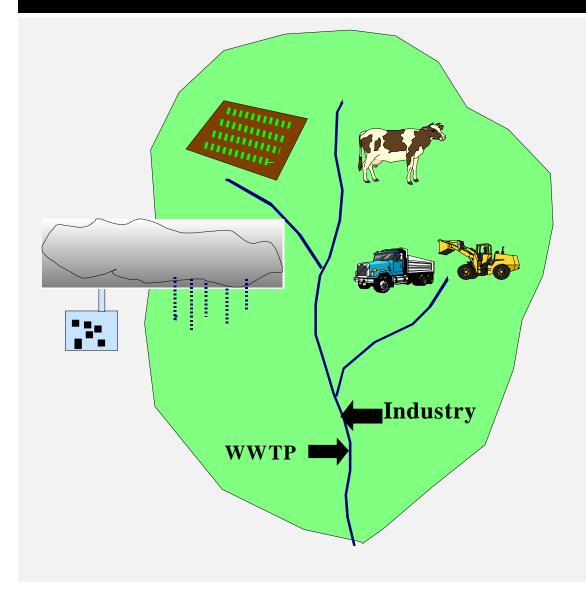
Four Phases of the Process

Assess the situation

Develop a solution

Implement the solution

Evaluate success



Assess the Situation

Develop a Solution

- Cause/source examination
- Data vs. estimations
- Scenarios

Environmental Protection Agency

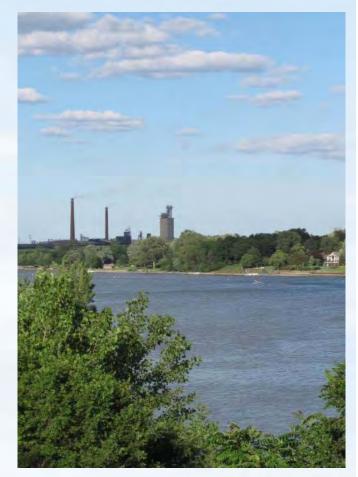
Lake Erie - Lower Maumee River Tributaries TMDL (part 2)

Maumee AOC Summit May 2, 2012

complex world CLEAR SOLUTIONS™

Discussion Overview

Background


Applicable Standards

Source Assessment

Linkage Analysis

Subwatershed Assessments **TMDL Components & Allocations**

Implementation Plan

Phased Approach

Phase 1

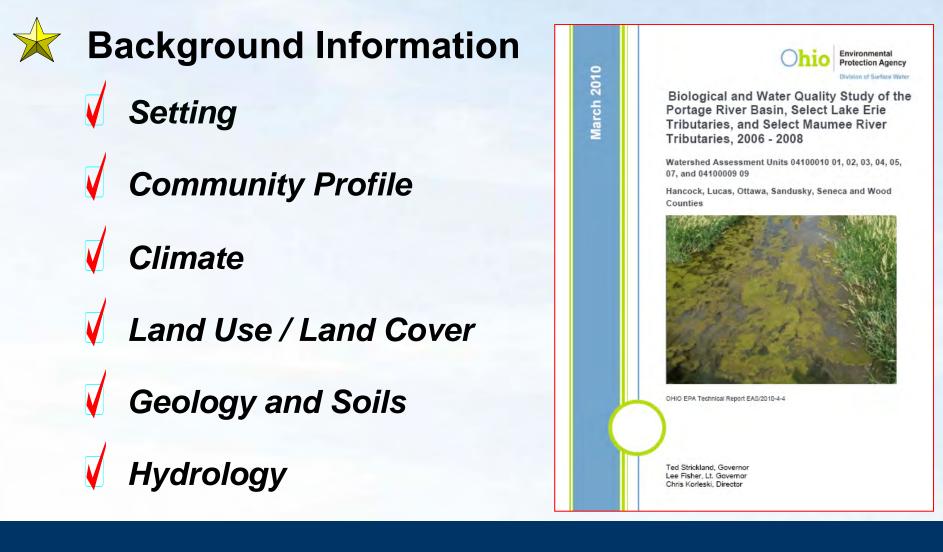
Characterization Source Assessment Linkage Analysis Draft TMDL

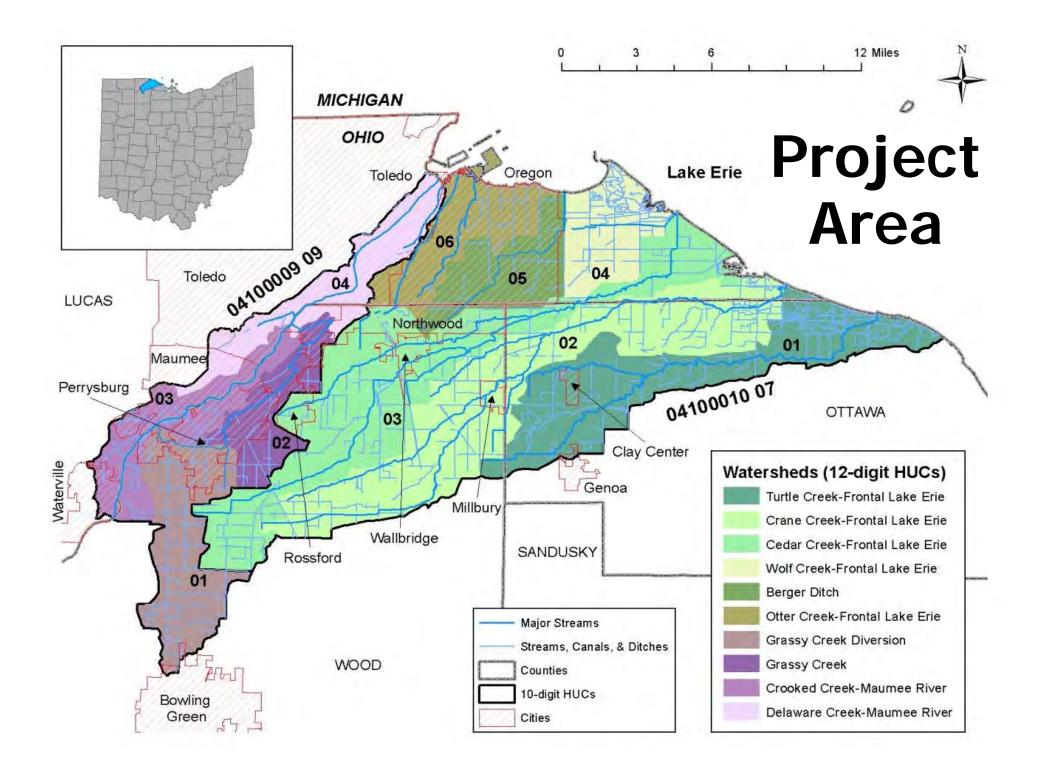
Phase 2

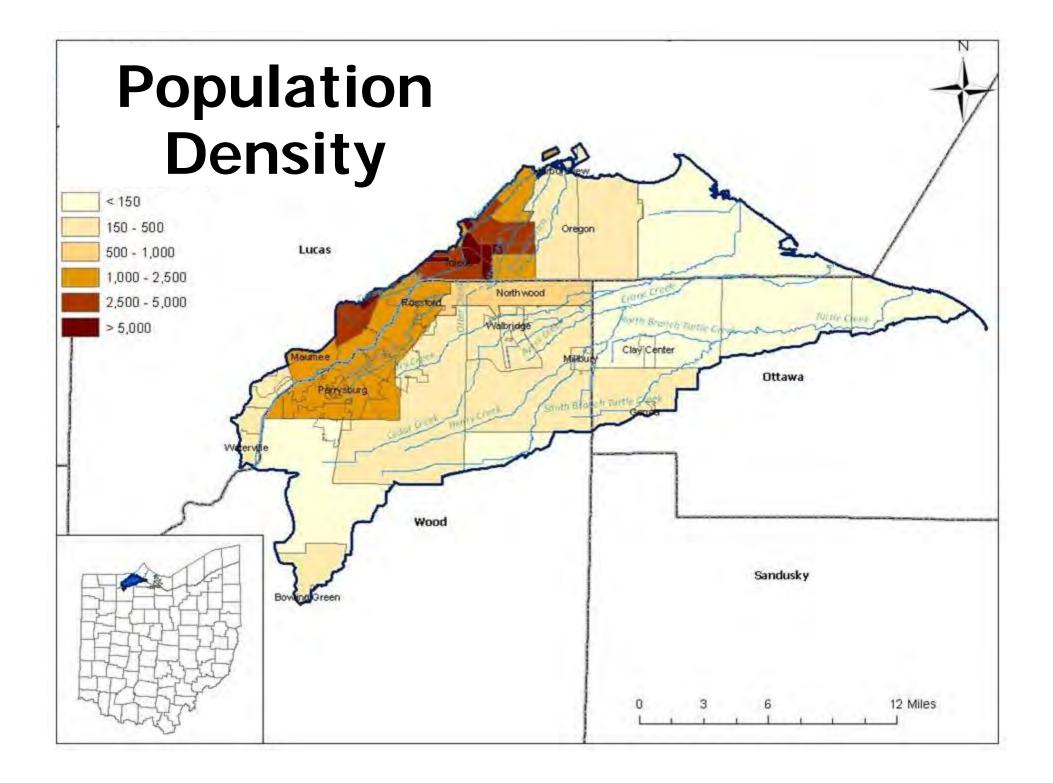
- Final TMDL
- Implementation plan

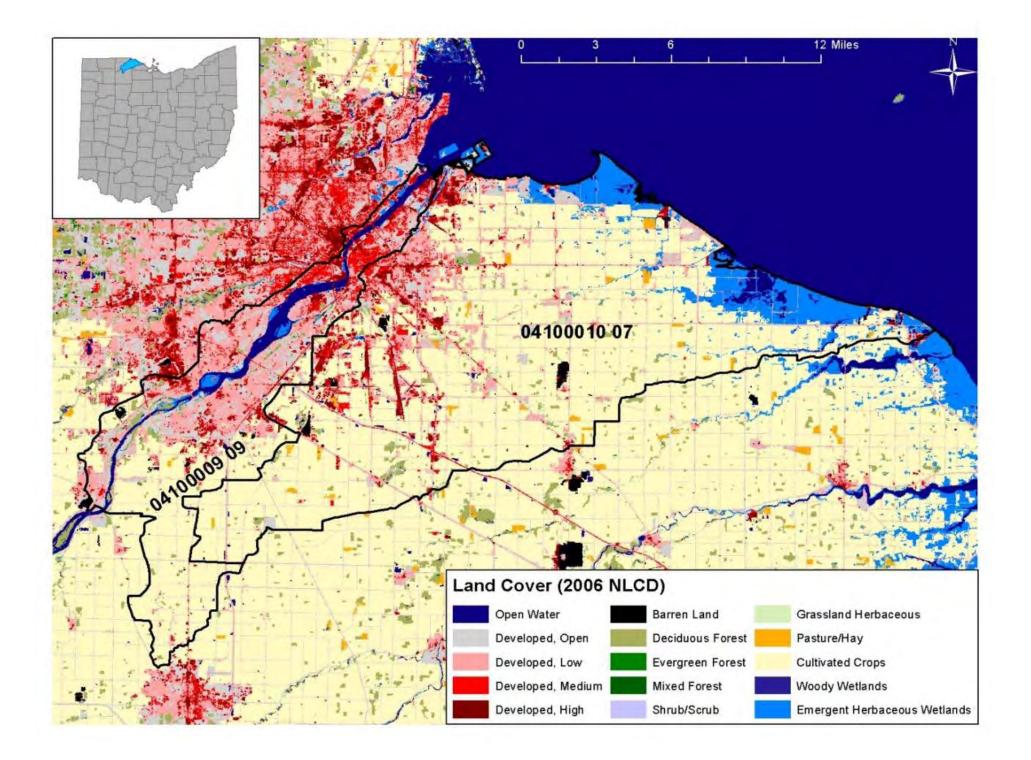
Phase 1

Watershed Characterization


V Background Information


Water Quality Indicators & Potential Targets





Watershed Characterization

TMDL Development

Regulatory Framework

TMDL Report -- Required Elements

Applicable WQ Standards

Loading Capacity

✓ Source Assessment

✓ Allocations

V Seasonal Variation

✓ Margin of Safety

TMDL = WLA Point Sources + WLA_{MS4} + LA + MOS

TMDL Development

Problem Solving Framework

Practical approach using key questions ...

- WHY the concern
- WHAT reductions are needed
- WHERE are the sources
- WHO needs to be involved
- WHEN will actions occur

LE-LM Tributaries TMDL WHY the Concern

V Not meeting <u>Recreation</u> and <u>Aquatic Life</u> uses

Determined by:

- poor <u>aquatic biology</u>
- water chemistry sampling

Supported by exceedances of:

- water quality standards

WHY the Concern

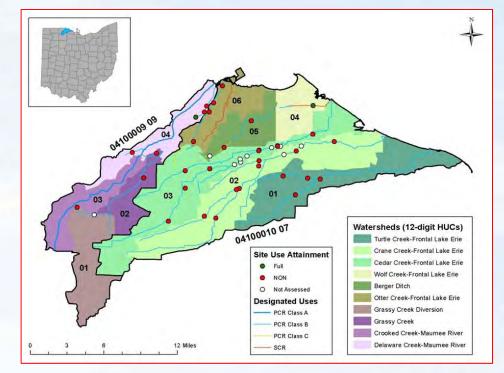
Lower Maumee River tributaries

Assessment Unit (AU)	Area (mi²)	Impairments		
04100009 09 01 Grassy Creek Diversion	24.78	Bacteria		
04100009 09 02 Grassy Creek	13.68	Bacteria, Sedimentation / Siltation		
04100009 09 04 Delaware Creek	19.25	Bacteria, Sedimentation / Siltation, Nitrate+Nitrite, Phosphorus (total), Flow Regime Alterations		

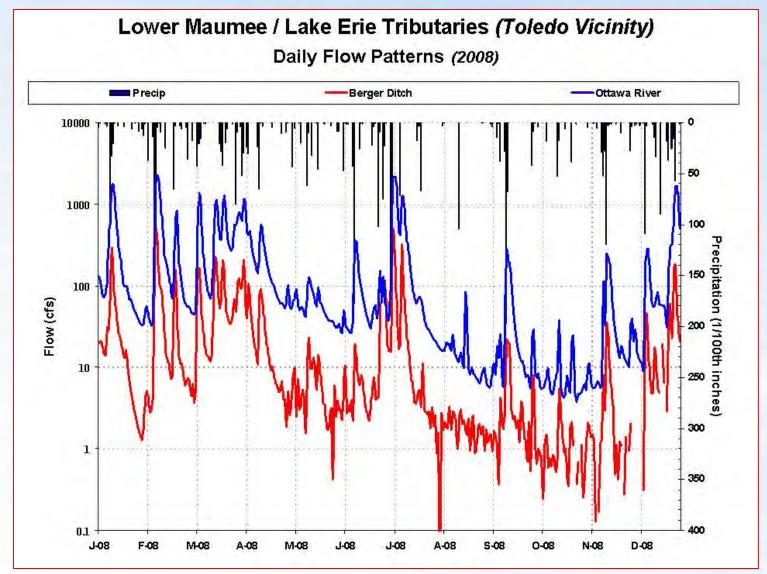
WHY the Concern

Assessment Unit (AU)	Area (mi²)	Impairments
04100010 07 01 Turtle Creek	40.66	Bacteria, Sedimentation / Siltation, Direct Habitat Alterations, Phosphorus (total), Ammonia (total), Dissolved Oxygen
04100010 07 02 Crane Creek	56.48	Bacteria, Sedimentation / Siltation, Phosphorus (total),
04100010 07 03 Cedar Creek	58.05	Bacteria, Sedimentation / Siltation, Ammonia (total), Organic Enrichment (sewage) Biological Indicators, Dissolved Oxygen
04100010 07 05 Berger Ditch	16.06	Bacteria, Sedimentation / Siltation, Organic Enrichment (sewage) , Biological Indicators, Phosphorus (total)
04100010 07 06 Otter Creek	18.13	Bacteria, Sedimentation / Siltation, Contaminated Sediments

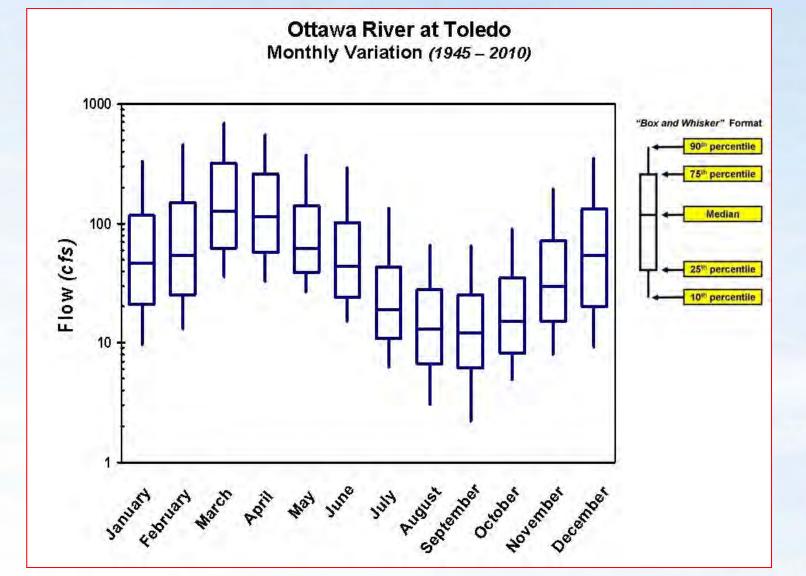
Water Quality Standards

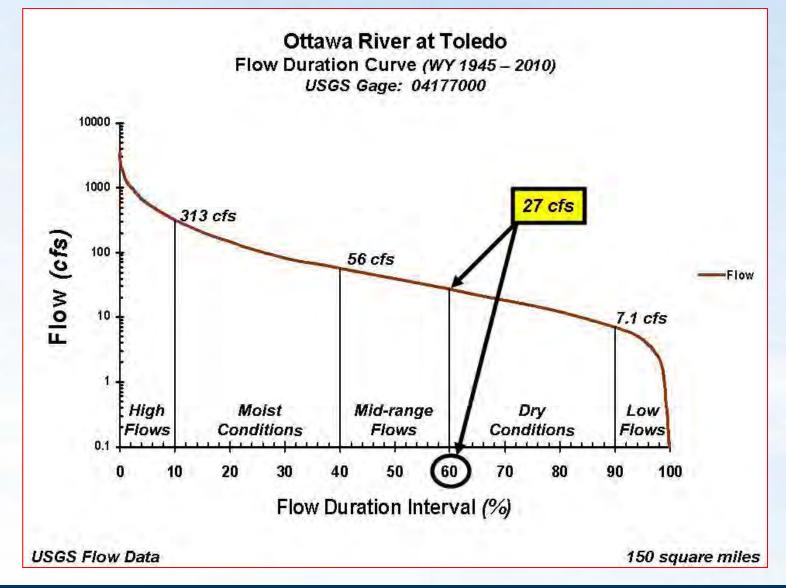

Parameter	Units	Aquatic Life	Recreation
Ammonia	mg/L	See tables	
Dissolved Oxygen	mg/L	5.0 / 4.0 <i>(WWH)</i> 4.0 / 3.0 <i>(MWH)</i>	
E. coli	#/100 mL		126 / 235 (Bathing waters) 126 / 298 (PCR – Class A) 161 / 523 (PCR – Class B) 206 / 940 (PCR – Class C) 1,030 / 1,030 (SCR)
Phosphorus (total)	µg/L	80 (WWH – Headwaters) 100 (WWH – Wadeable) 340 (MWH – Headwaters) 280 (MWH – Wadeable)	
NO ₂ + NO ₃	mg/L	 1.0 (WWH – Headwaters) 1.0 (WWH – Wadeable) 1.0 (MWH – Headwaters) 1.6 (MWH – Wadeable) 	

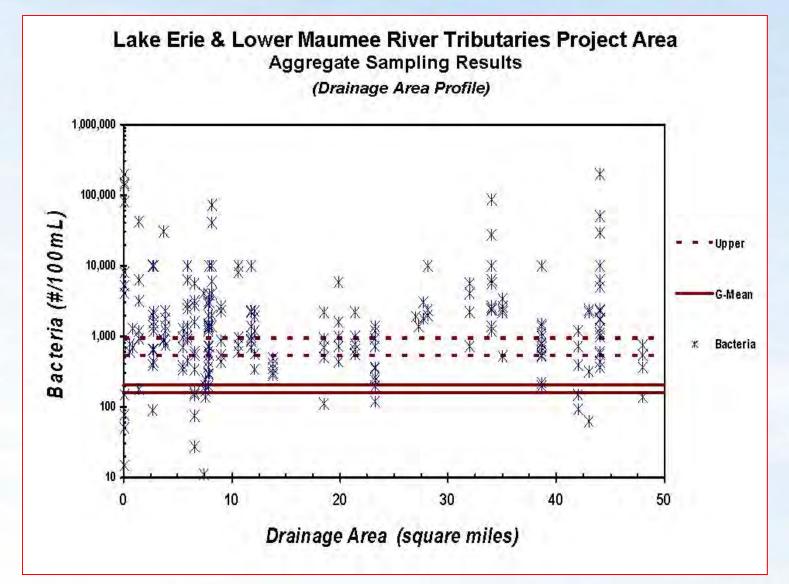
<u>Data Summary</u>

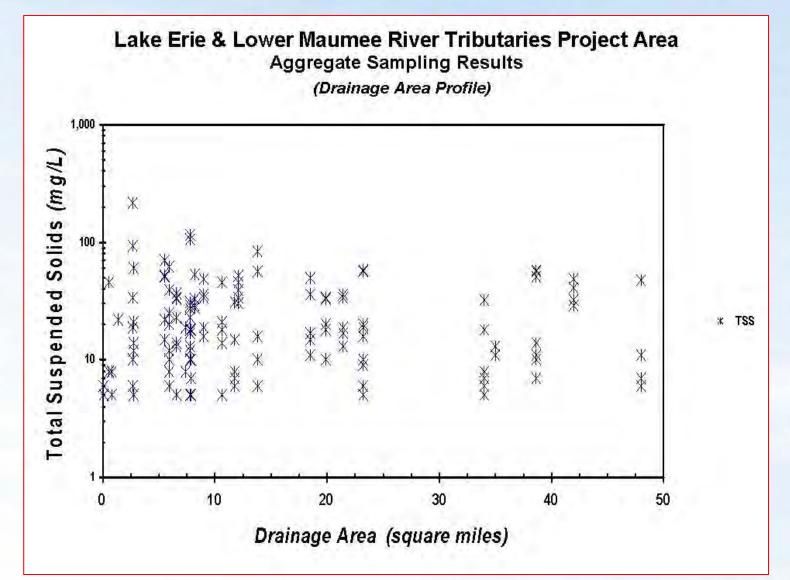

Evaluate existing information

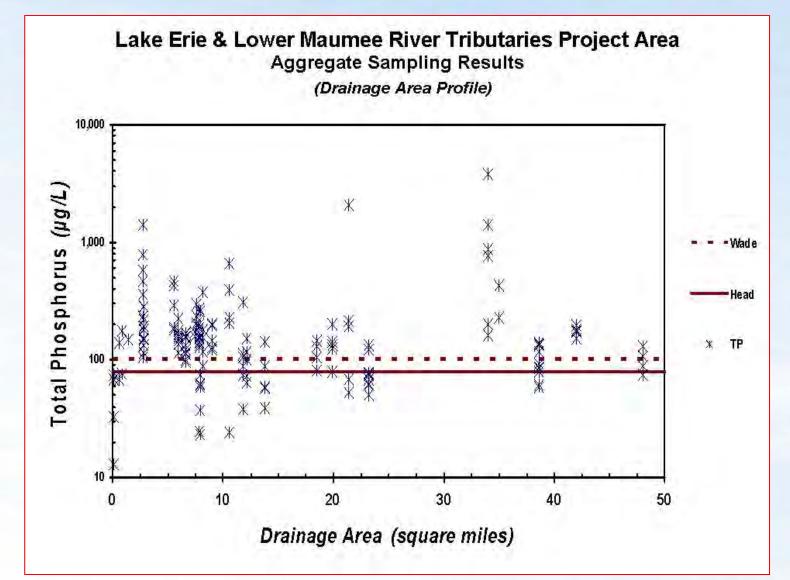
- Ohio EPA sampling (biology, habitat, water chemistry)
- USGS
- Other efforts

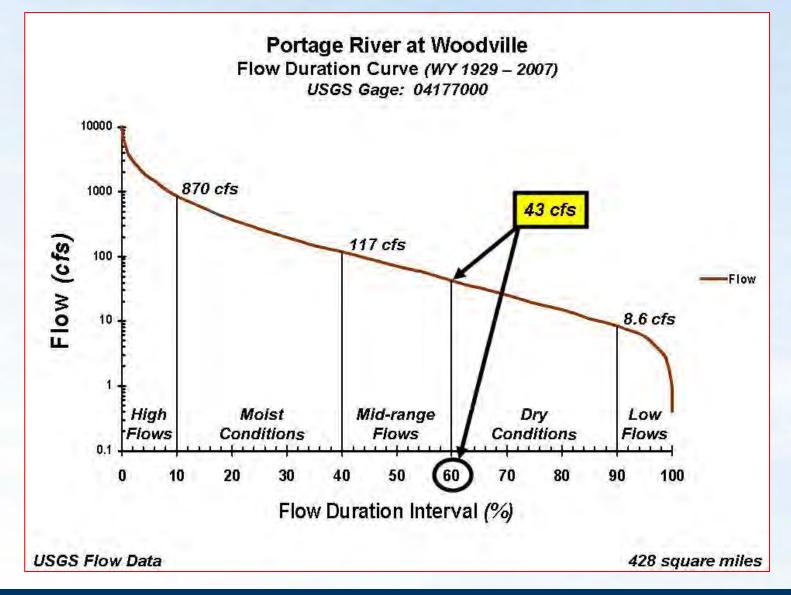


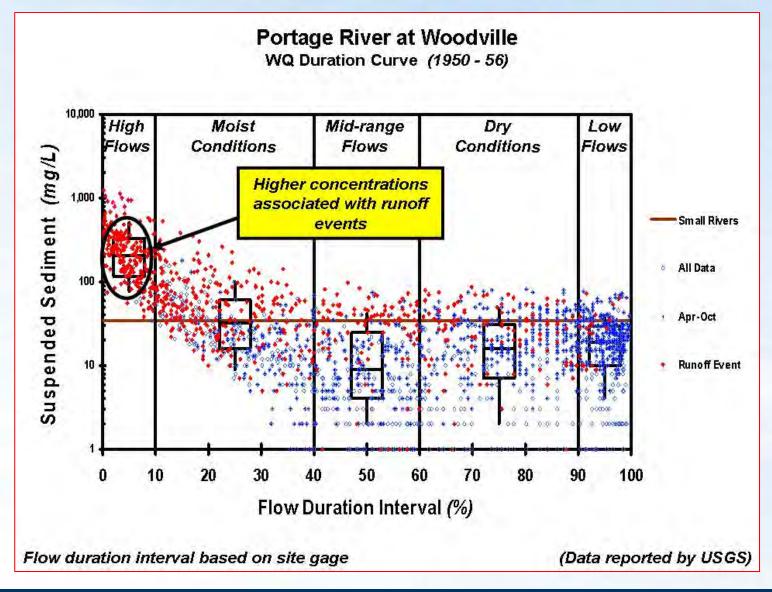

Hydrology


Hydrology


Hydrology


Area Patterns


Area Patterns


Area Patterns

Flow & WQ Relationships

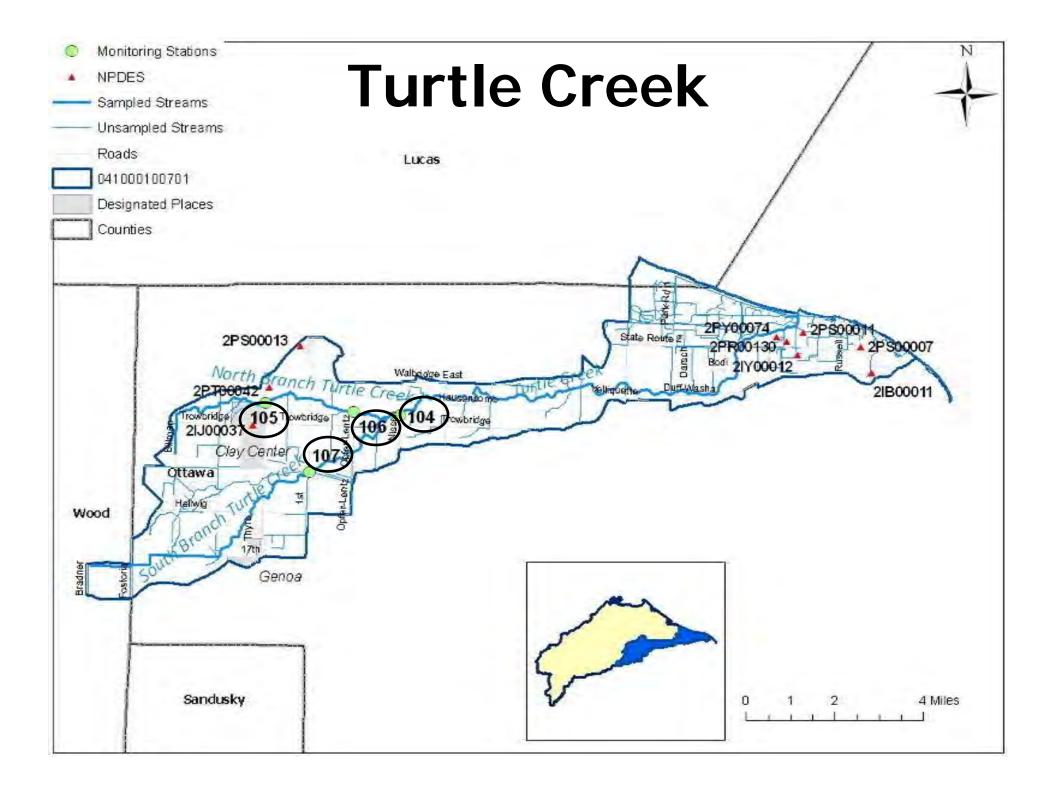
Flow & WQ Relationships

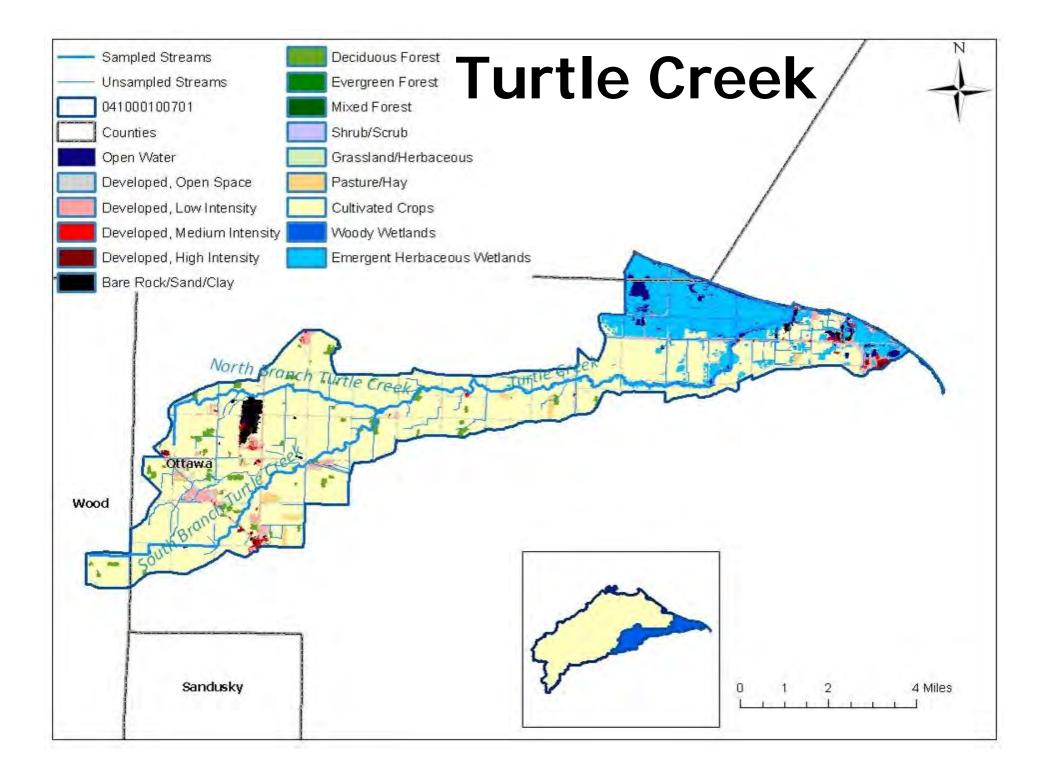
Source Assessment

Subwatershed Approach

Source Data Review
 NPDES Facilities
 Storm Water (MS4 & CSO)
 Land Use

Integrated Summary


Subwatershed Approach

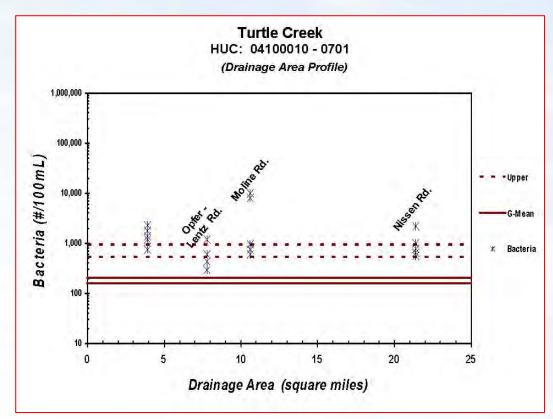

Subwatersheds	Area
Subwatersneus	(sq. mi.)
Turtle Creek	40.6
Crane Creek	56.4
Cedar Creek	58.0
Wolf Creek	15.1
Berger Ditch	16.0
Otter Creek	17.9
Grassy Creek / Grassy Creek Diversion	38.4
Delaware Creek / Crooked Creek	38.1
TOTAL	280.5

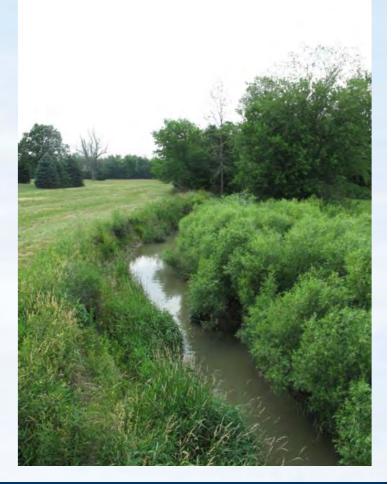
Integrated Summary

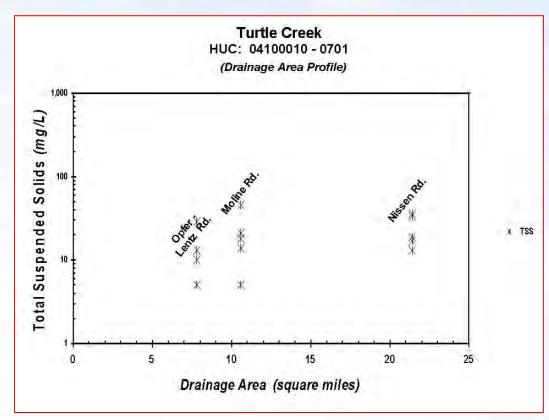
Turtle Creek

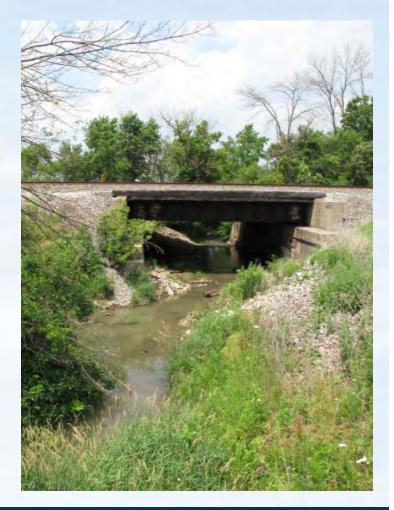
Integrated Summary

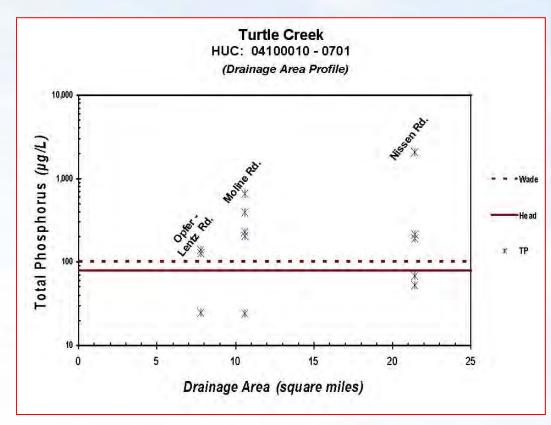
Impairments	Sources of Aquatic Life Use Impairment			
Bacteria, Sedimentation / Siltation,	Channelization,			
Direct Habitat Alterations,	Nonirrigated Crop Production,			
Phosphorus (total),	On-site treatment systems (septic systems			
Ammonia (total), Dissolved Oxygen	and similar decentralized systems)			

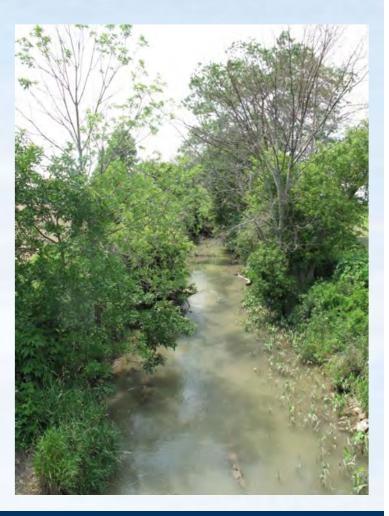



Integrated Summary


Ohio EPA #	Туре	Name
2PT00042	Municipal	Genoa Area Local Schools
2IY00012	Industrial	Carroll Water & Sewer
2PR00130	Municipal	Fenwick Marina
2PY00074	Municipal	Inland Marina & Campground
2PS00011	Municipal	Turtle Creek Marina & Campground
2IJ00037	Industrial	White Rock Quarry LP

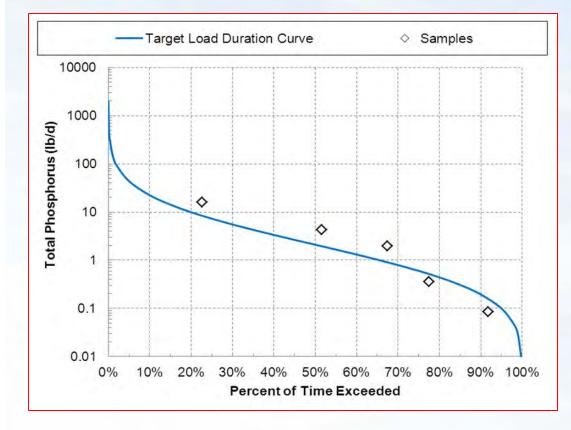






Turtle Creek

WQ Patterns (Phosphorus)



Water Quality Patterns

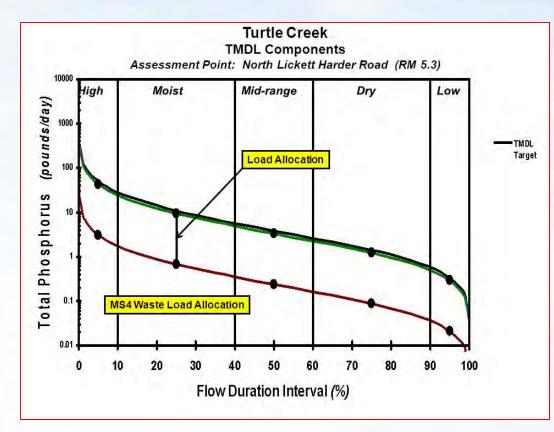
Duration Curve Framework

TMDL Allocations

Regulatory Framework

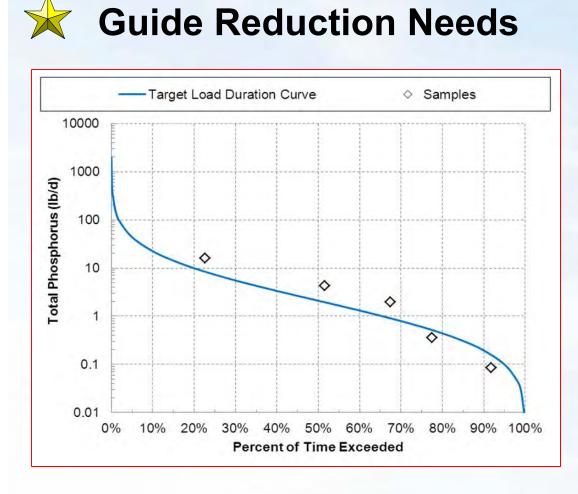
TMDL = WLA Point Sources + WLA_{MS4} + LA + MOS

Turtle Creek at North Lickett Harder Road


Pollutant	Allocation Category	High Flows	Moist Conditions	Mid- Range	Dry Conditions	Low Flows
Total Phosphorus (Ibs/day)	LA	40.0	8.70	3.00	1.100	0.270
	WLA	3.1	0.67	0.23	0.086	0.021
	MOS + FG	6.9	1.53	0.55	0.224	0.050
	TMDL = LA+WLA+MOS	50.0	10.9	3.78	1.41	0.341

TMDL Allocations

Regulatory Framework


Components

Transition to Implementation

Water Quality Patterns

LE-LM Tributaries TMDL

Goal of Project

- **Driving Principles**
 - Technically-based (logic path)
 - Meaningful (easily understood)
 - Value-added (connect to implementation efforts designed to solve problem)

Implement the Solution

We want to hear your feedback!

Evaluate Success

Maumee River (lower) Tributaries and Lake Erie Tributaries TMDLs

Completed TMDLs for:

- Total phosphorus
- *E. coli* bacteria
- Total suspended solids
- Nitrate/nitrite
- Ammonia

Delaware Creek near Rohr Drive

Implementation: What to do...

- Point sources: total phosphorus
 - Recommend some facilities receive TP limits
 - Some being tied in (TMACOG 208 plan)
- Nonpoint sources: What will reduce nutrients and sediment?
 - Storm water best management practices
 - Vegetated buffers?
 - Grassed waterways?
 - No-till farming?

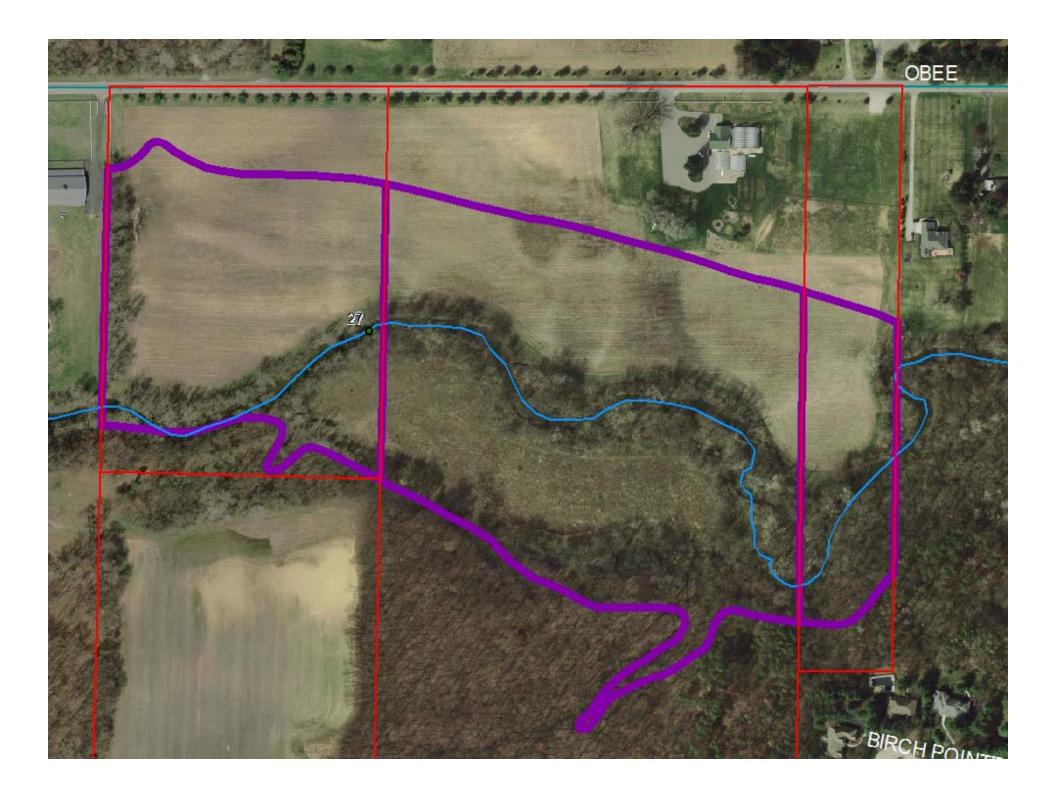
Contact Information

Beth Risley Division of Surface Water, Central Office P.O. Box 1049 Columbus, OH 43216 (614) 728-2384 <u>beth.risley@epa.state.oh.us</u>

Public review period:

May 9 through June 11

Send comments to Cherie


Cherie Blair Division of Surface Water, Northwest District Office 347 N. Dunbridge Rd. Bowling Green, OH 43402 (419) 352-3010 <u>cherie.blair@epa.state.oh.us</u>

http://www.epa.ohio.gov/dsw/tmdl/MaumeeLowerLakeErieTributariesTMDL.aspx

- Swan Creek watershed
- Waterville Township
- Approximately 10 acres

- Stream stabilization
 - Increased buffer
 - Habitat improvement
 - Stabilization

- Stream stabilization
 - Increased buffer
 - Habitat improvement
 - Stabilization

- Floodplain
 - Vernal pools
 - prairie

OEPA Section 319(h) grant

Project partners

- TMACOG
- Lucas SWCD
- Wheeler farms
- Timeline

- Design - fall/winter 2012/20

Construction – Summer 201.

Funding

- \$80,000 federal grant funds

– \$54,000 local match

• \$134,000 total

Interactions Between Human Decisions, Biophysical Processes, & Ecosystem Services in the Maumee Watershed & Bay

Jay Martin, FABEBrian Roe, AEDEElena Irwin, AEDEEric Toman, SENRStuart Ludsin, EEOBRobyn Wilson, SENRErik Nisbet, COMM.Carlo DeMarchi, CWRUSeyoum Gebremariam, FABE-EEOB

http://ohioseagrant.osu.edu/maumeebay/

Research Questions

• Maumee River Watershed as a Model Ecosystem

Project Expectations & Methods

Non-point source inputs of nutrients & sediments can:

- Reduce water clarity
- Increase harmful algal blooms (HABs)
- Reduce habitat quality (e.g., dead zones)

- Threat to ecosystem services expected to worsen with continued climate change:
 - Expected increases in sediment & nutrient runoff
 - Wetter winters & springs
 - Increased storm frequency
 - Expected increases in temperature
 - Longer growing seasons
 - Stronger thermal stratification
 - Reduced downstream habitat quality
 - Increased HAB production
 - Reduced water clarity
 - Increased "dead zone" formation

- Can we stop this progression toward eutrophication?
 - Best management practices offer potential
 Conservation tillage, controlled drainage, riparian buffers
 - Policymakers have been reluctant to mandate them & voluntary farmer adoption has been limited
 Secchi et al. (2008)
 - Understanding of the exact sources of P is lacking
 hence, the name "non-point" source pollution
 - Understanding of human behavior also lacking
 farmers, policymakers, & general public

Today's Presentation

Conceptual Foundation

Research Questions

Maumee River Watershed as a Model Ecosystem

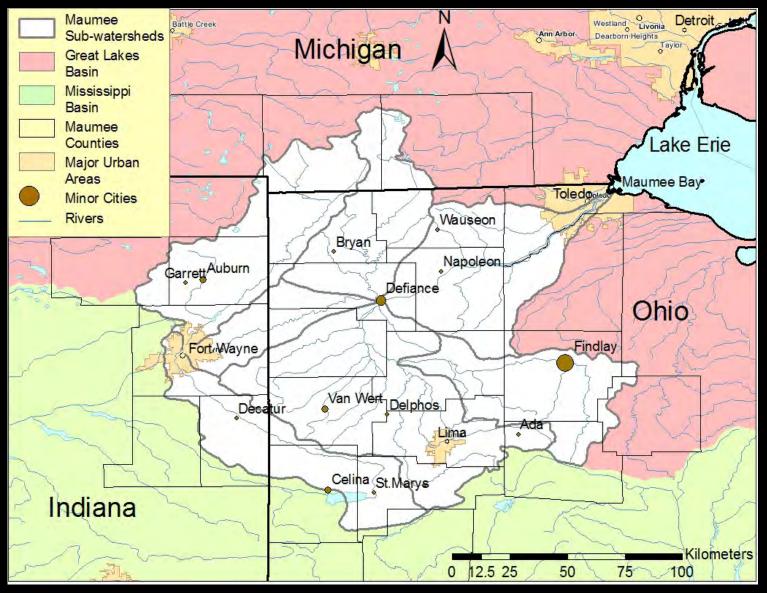
Project Expectations & Methods

Central Research Questions

Can changes in upstream public attitudes, policies, & farmer behavior offset the anticipated negative impacts of climate change on downstream ecosystem services?

- Human behavior in the upstream watershed can drive downstream ecosystem conditions, but how do downstream conditions feed back to influence attitudes & behaviors of those living upstream?
- To what extent do policies, public opinion, & changing ecological conditions influence farmer land-use & how will this feed back to influence management decision-making?
- Will human behavior across the watershed or external climate forces have a larger impact on future watershedwater body interactions?

Today's Presentation

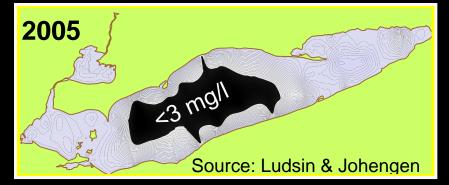

Conceptual Foundation

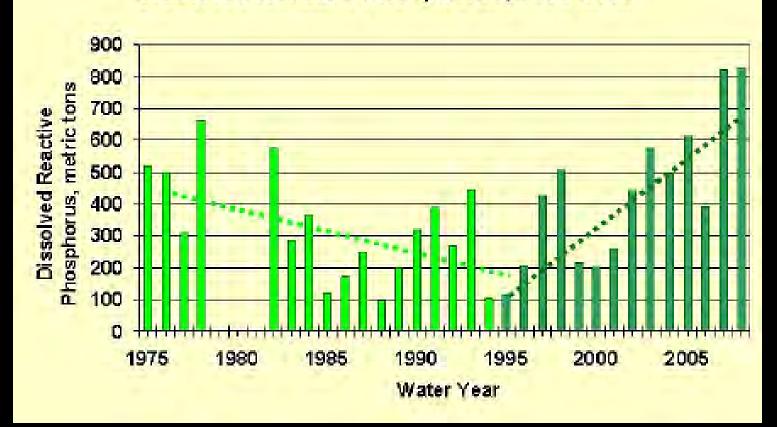
Research Questions

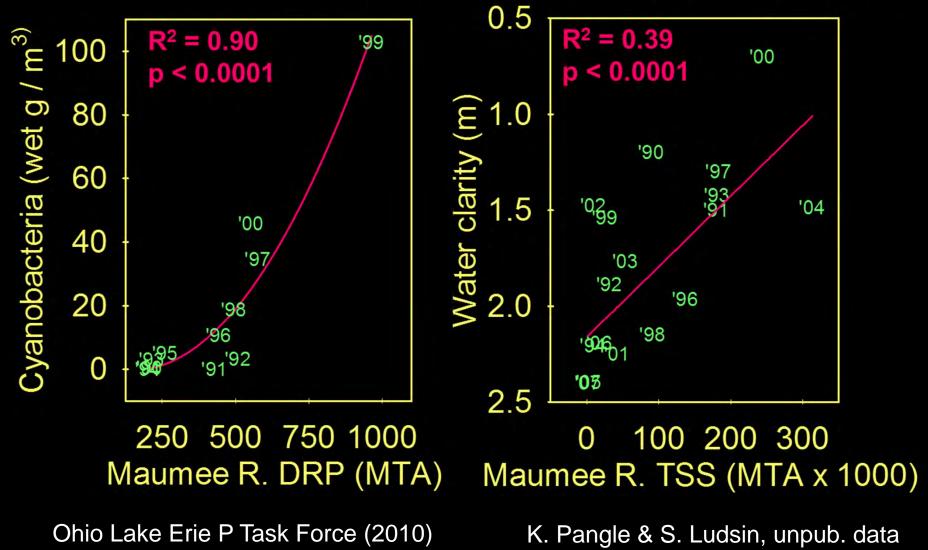
• Maumee River Watershed as a Model Ecosystem

Project Expectations & Methods

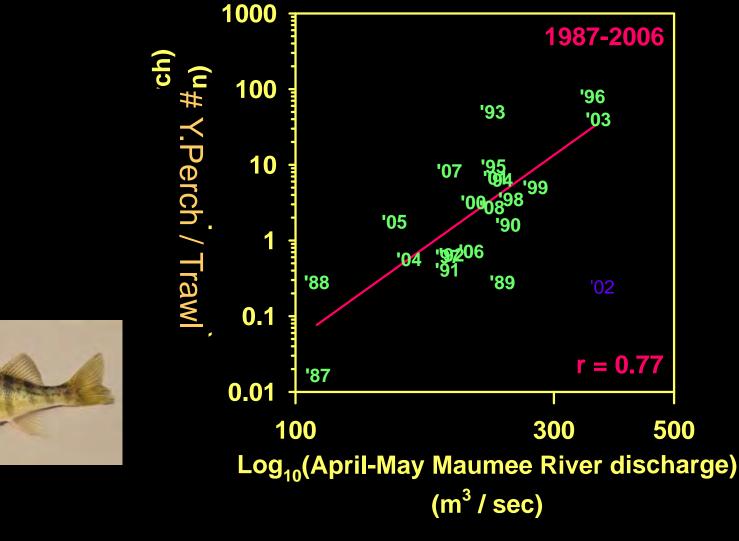
Maumee River watershed


Showing symptoms of eutrophication




Increase in bioavailable P (dissolved reactive P) Agricultural is thought to be significant contributor

Maumee River, Annual Loading, Dissolved Reactive Phosphorus, 1975-2008



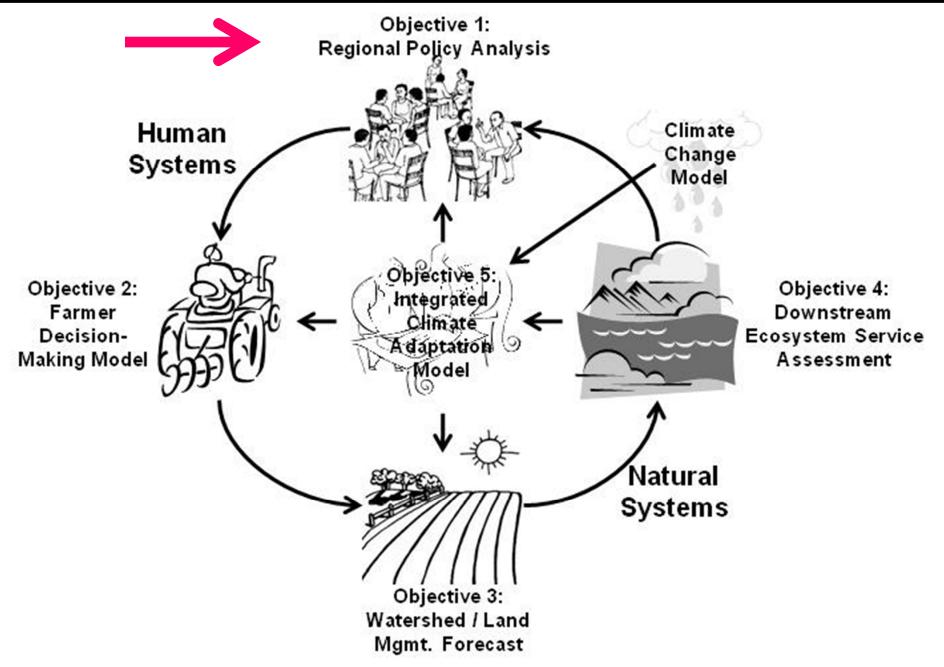
Ohio Lake Erie Phosphorus Task Force Final Report (2010)

 Precipitation-driven, non-point source inputs from Maumee R. drive downstream Lake Erie conditions

Maumee River inputs drive fishery dynamics

Ludsin et al. (2011)

- Continued changes in meteorology are expected
 - Precipitation increases expected to continue
 - During winter (fallow period) & spring (planting period)
 - Doubling of single & multi-day storm events
 - Warming expected to continue
 - Summer: 3 11°C; Winter: 3 7°C
 - Longer growing season (33-88 days)

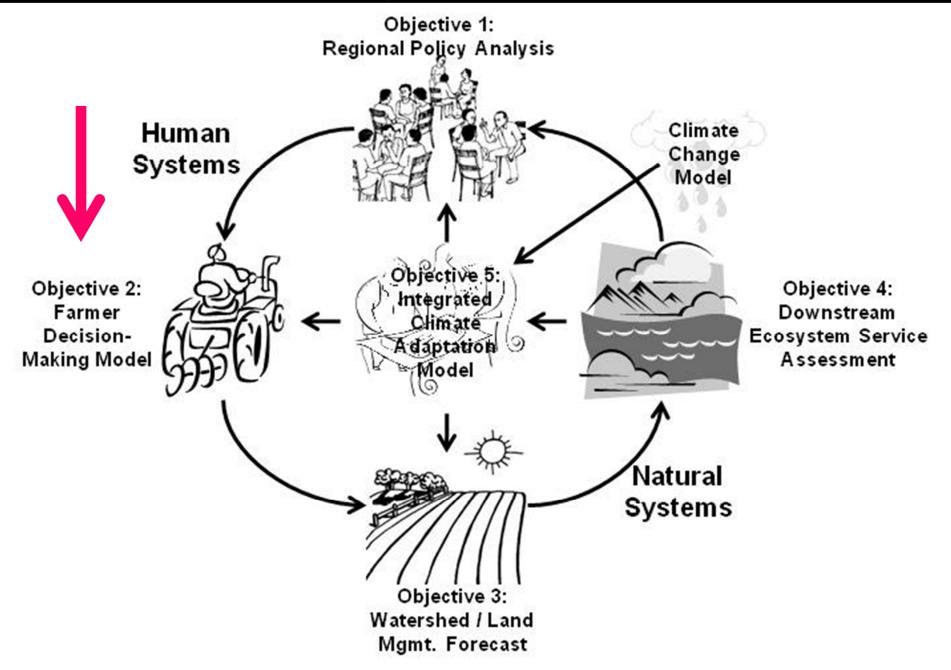

Today's Presentation

Conceptual Foundation

Research Questions

Maumee River Watershed as a Model Ecosystem

Project Expectations & Methods



Obj. 1: Regional Policy Assessment
 Toman, Nisbet, Ludsin, Martin

Primary Goal

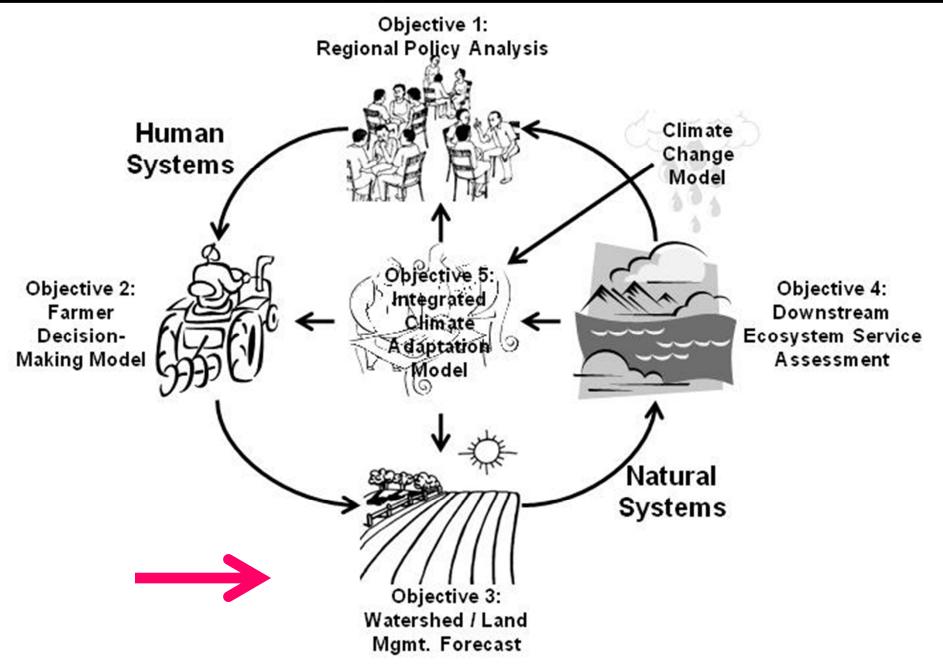
A model that predicts the influence of individual attributes, local conditions, & downstream ecological conditions on farmer & policy-maker <u>attitudes</u> towards land-use practices and policies (BMPs) <u>Methods</u>

(1) 16 focus groups with key stakeholder(s)(2) In-depth interviews with managers & policy-makers(3) Mail survey

Obj. 2: Farmer Decision-Making Model Wilson, Irwin, Roe

Primary Goal

A quantitative model that predicts farmer land-use &


policy decision-making from socio-demographic &

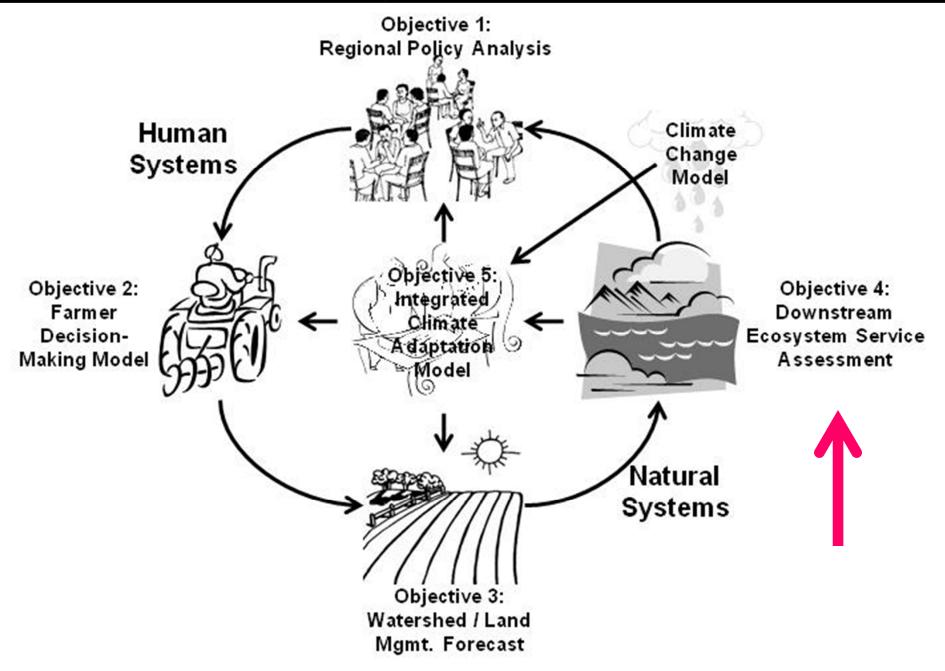
environmental contextual factors

Methods

Farmer mail survey

- Identify factors that influence farmer decision-making Develop decision-making rules
 - Given policy change x, how will farmer decisionmaking change?

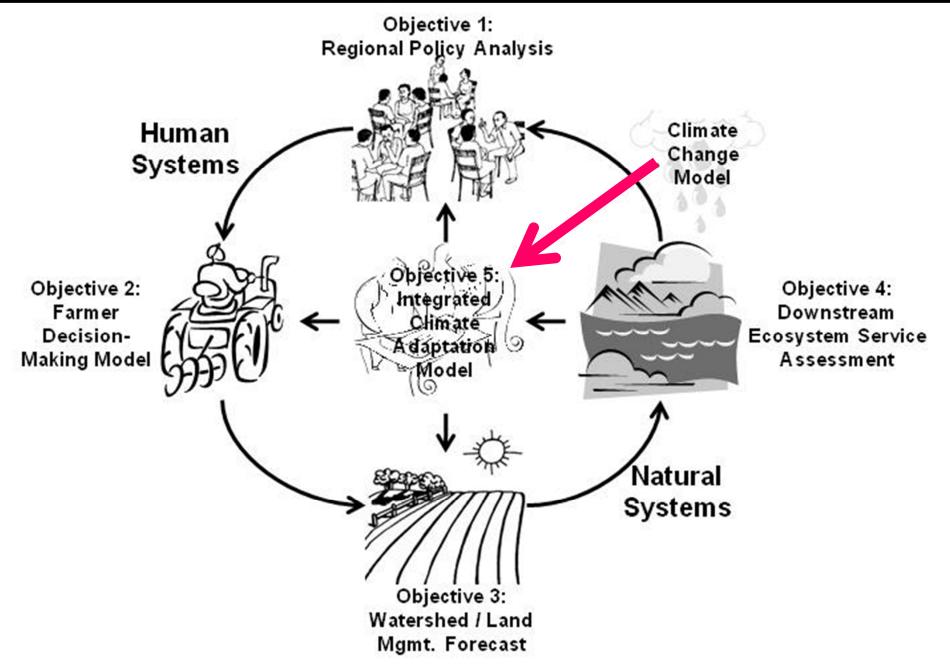
Obj. 3: Spatially-explicit Behavioral Model Irwin, Wilson, Roe


Primary Goal

Spatial model that can forecast agricultural land-use outcomes across the watershed based on behavioral, other individual, local, & downstream environmental attributes

Methods

Develop spatially-explicit land-cover models


 predict land-use & management outcomes as a continuation of past spatial trends & behavior

Project Methods

- Obj. 4: Biophysical Model (DeMarchi, Ludsin, Martin)
 <u>Primary Goals</u>
 - A biophysical model to predict downstream ecosystem change as a function of climate & agricultural land management
 - Identify "hot spots" in the watershed that have a disproportionate effect on the downstream ecosystem conditions (sources of sediment & nutrients)
 Methods
 - 1. Modify a Maumee River watershed/hydrology model to simulate transport of sediments & nutrients
 - 2. Refine statistical models that predict western Lake Erie water clarity, HABs, and fish production from Maumee River discharge & TSS/nutrient loading

Project Methods

Project Methods

- Obj. 5: Integrated Climate Adaptation Model
 - Martin, Ludsin, DeMarchi, Nisbet, Irwin, Wilson, Toman

Primary Goals

- Discern the relative roles of farmer behavior, policy implementation, & climate change in driving downstream Lake Erie ecosystem services
 Water clarity, HABS, & fish production
- 2. Learn if managers can offset expected climate change consequences through policies & behavioral modification

Thanks for your attention!

Project Website

http://ohioseagrant.osu.edu/maumeebay/

Teaching & Learning Collaborative

Michigan Dept. of Natural Resources

Pennsylvania Fish and Boat Commission

Eastern Maumee AOC Wetland & Riparian Inventory and Restoration Plans

Timothy L. Walters, ErwiroScience

The Inventory

- Summary of potential riparian and wetland restoration projects for the Eastern portion of the Maumee AOC
- Focused on improving 3 BUI's
 - BUI #3 Degraded fish and wildlife populations
 - BUI #6 Degradation of benthos
 - BUI #14 Loss of fish and wildlife habitat
- Companion volume to the Swan & Ottawa River Inventory (2008).
 - Prepared for Partners for Clean Streams
 - 2 projects from inventory are going forward
 ... so far.

Funding

 Provided by U.S. EPA and the Great Lakes Restoration Initiative, this through the US Environmental Protection Agency as requested by the Ohio Environmental Protection Agency.

Prepared by

Tetra Tech Inc., The Mannik & Smith Group and EnviroScience, Inc.

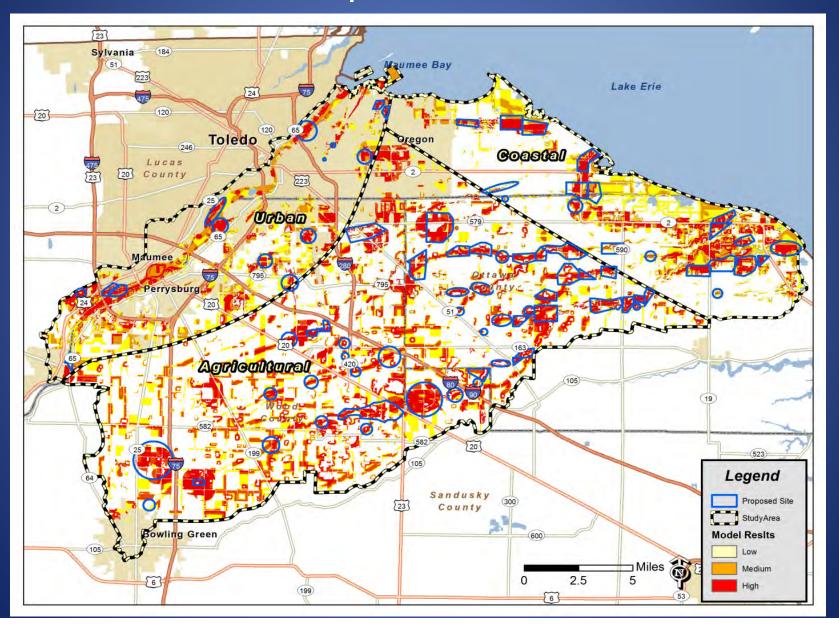
Data Sources	Lucas	Ottawa	Wood	Sandusky
2006 OSIP Aerials	х	х	х	х
Elevation				
1/3 Arc USGS DEM (10m)	х	х	х	х
2006 OSIP LIDAR	х	х	х	х
County Data				
Parcels	х	х	х	х
Street Centerlines	х	х	х	х
Soils 05'	х	х	х	х
Streams	х	х	х	х
Land Use	х	х	х	х
Park Lands	Metroparks			х
owi	х	х	х	х
NWI (Ducks Unlimited)	х	х	х	х
Local	х			
Biodiversity Database				
Plant	х	х	х	х
Animal	х	х	х	х
Managed Areas	х	х	х	х
Ecological Information				
NWI Wetlands w/OEPA attributes	х	х	х	х
Potential Vernal Pool Restoration Areas	х	х	х	х
National LandCover Data - Canopy	х	х	х	х
National LandCover Data - Impervious	х	х	х	х
National LandCover Data - Landcover	х	х	х	х
Great Lakes CARL 08	х	х	х	х
BSC Easements	х	х	х	х
Migratory Bird Stopover Sites	х	х	х	х
Hydrology				
Flood Zones	х	х	х	х
Watersheds	х	х	х	х
National Hydrologic Dataset	х	х	х	х

Project Team

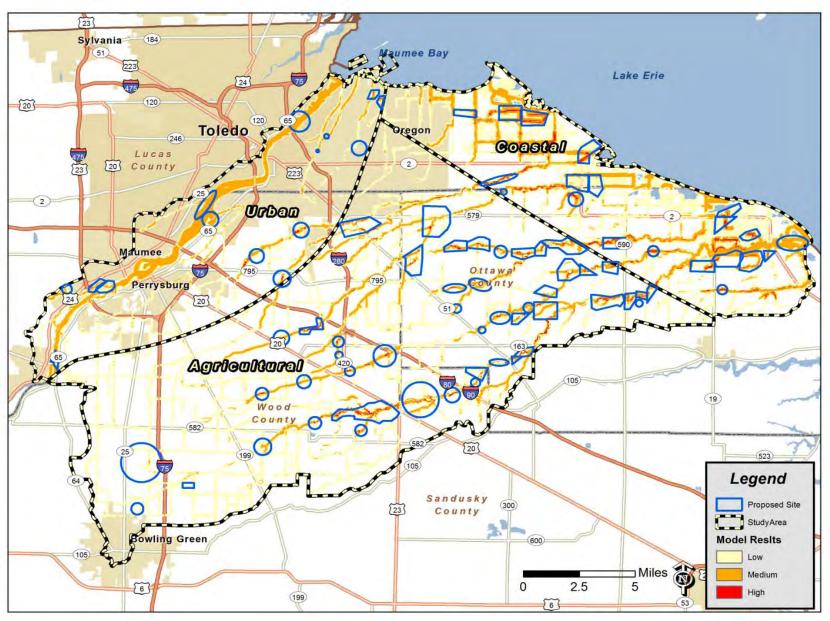
• Comprised of:

- Conservation agencies
- Local government, county soil & water agencies
- Ohio EPA

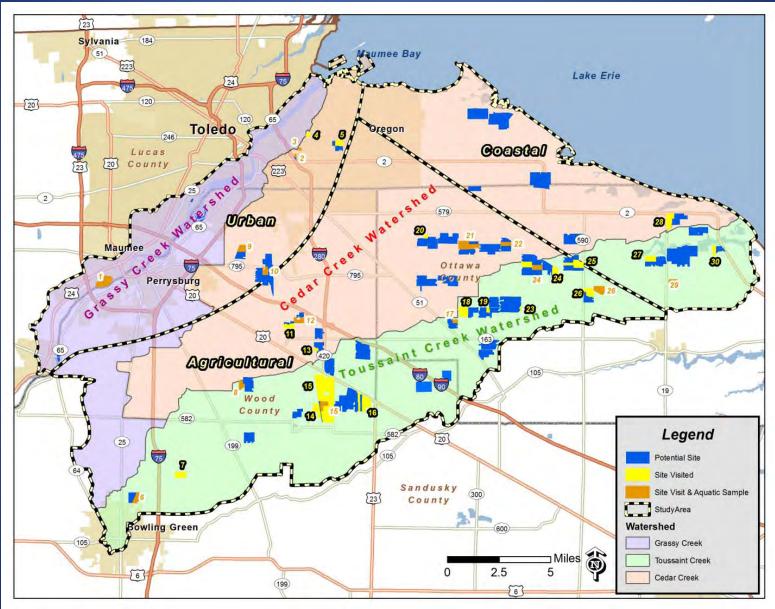
• Provided:


- Knowledge of current techniques within the watershed
- First hand knowledge of current activities
- Knowledge of current policies/ local concerns

Two Weighted Models


Riparian			
Category	% Influence	Field	Scale Value
		Distance Ft.	Scale
	0	0	
		0-250	5
River/Ditch	35	250-500	3
		500-750	2
		No Data	0
		Distance Ft.	Scale
		0	0
		On-Site	5
Flood	22	0-250	3
		250-500	2
		No Data	t2-6
		Distance Ft.	Scale
		0	0
		On-Site	0
Woodlots	9	0-150	5
		150-300	3
		300-450	2
		No Data	0
		Landcover	Scale
		Open Water	2
		Developed, Open	2
		Developed Low	0
		Developed Medium	0
		Developed High	0
		Barren Land	0
		Deciduous Forest	2
Land Cover	13	Evergreen Forest	2
		Grassland/Herbaceuous	5
		Hay/Pasture	5
	Cultivated Crops	5	
		Woody Wetland	2
		Emergent Herbaceous Wetland	4
		No Data	0
		Density %	Scale
		0-20	5
		20-40	4
Canopy	9	40-60	2
cutopy	2	60-80	1
		80-100	0
		100-101	0
		No Data	0
		Distance Ft.	Scale
		0	0
Managed 4	On-Site	2	
		0-1320	5
	1320-2640	3	
	No Data	0	
	Size Ac.	Scale	
		0-30	0
		30-60	3
Parcels	4	60-90 90-150	4
	150-1000 No Data	5	
		No Data	0 Scale
		% Hydric 0-20	Scale 1
Calle		20-40 40-60	2
Soils 4	4	40-60	4
		60-80 80-100	5
		No Data	0
Total	100	NO Data	U
Total	100		

	Larger	labitat	
Category	% Influence	Field	Scale Value
		Yes/No	Scale
		Yes	0
Impervious	20	No	5
		No Data	0
	20	Landcover	Scale
		Open Water	2
		Developed, Open	2
		Developed Low	0
		Developed Medium	0
		Developed High Barren Land	0
Land Cover		Deciduous Forest	2
		Evergreen Forest	2
		Grassland/Herbaceuous	5
		Hay/Pasture	5
		Cultivated Crops	5
		Woody Wetland	2
		Emergent Herbaceous Wetland	4
		No Data	0
		Distance Ft.	Scale
		0	0
		On-Site	2
Managed	17	0-1320	5
		1320-2640	3
		No Data	0
		Size Ac.	
		0-30	0
		30-60	3
Parcels	15	60-90	4
		90-150	5
		150-1000	5
		No Data	0
		Distance Ft.	Scale
		0	0
		On-Site	5
Flood	6	0-250	3
		250-500	2
		No Data	0
		Distance Ft.	Scale
		0	0
River	6	0-250	5
	Ŭ	250-500	4
		500-750	3
		No Data	0
		Distance Ft.	Scale
		0	0
Rare Species	6	0-1320	5
		1320-2640	3
		No Data	0
		Distance Ft.	Scale
	10	0	0
		On Site	0
Woodlots		0-150	5
		150-300	3
		300-450	2
		No Data	0
Total	100		


Large Habitat Model Results and Original 84 Proposed Sites

Riparian Model Results and Original 84 Proposed Sites

53 Potential & 30 visited sites

Visited 30 sites

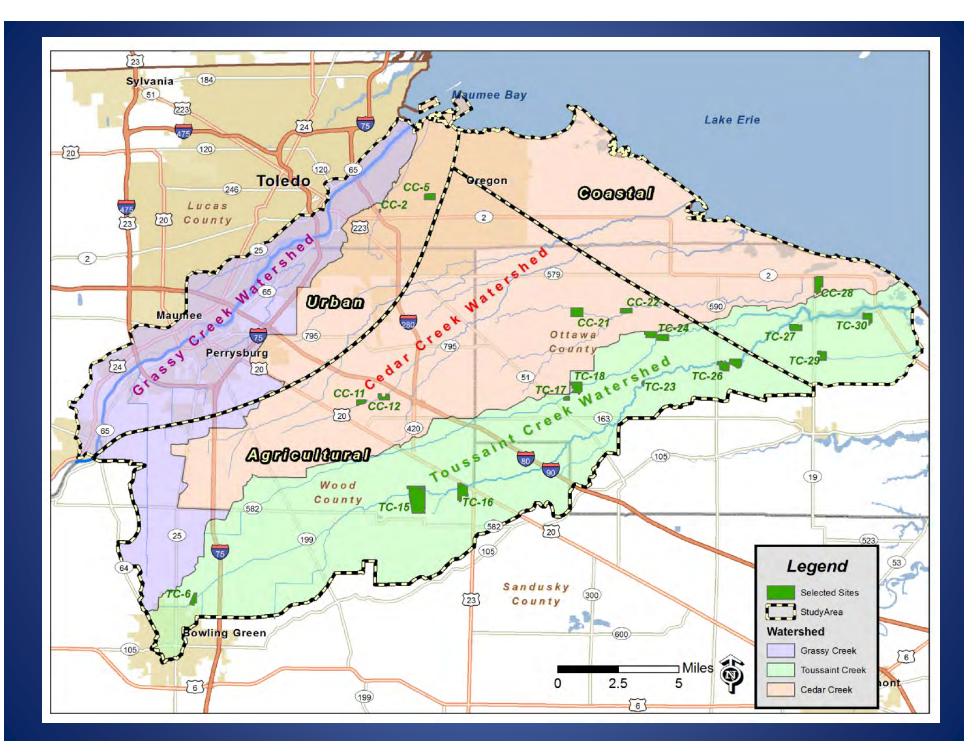
- Wetlands ORAM
 Hydric soils
- Large Streams QHEI
- Headwater Streams HHEI
- Buffer/Upland areas FQAI

Fish & Bugs

• Of those 30 sites:

15 were also for evaluated Fish and Macroinvertebrates

- IBI Index of Biotic Integrity (Fish assemblages)
- List of Macro invertebrates
- MIwb Modified Index of Well-Being



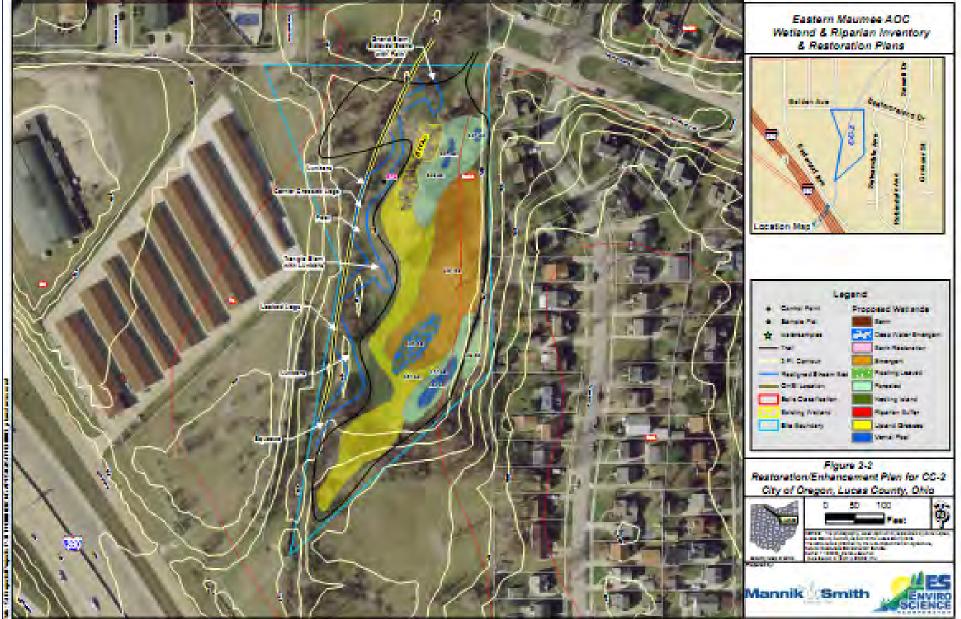
18 Selected Sites

 Of the 30 sites visited, 18 were selected by the Project Management Team for plans to be developed

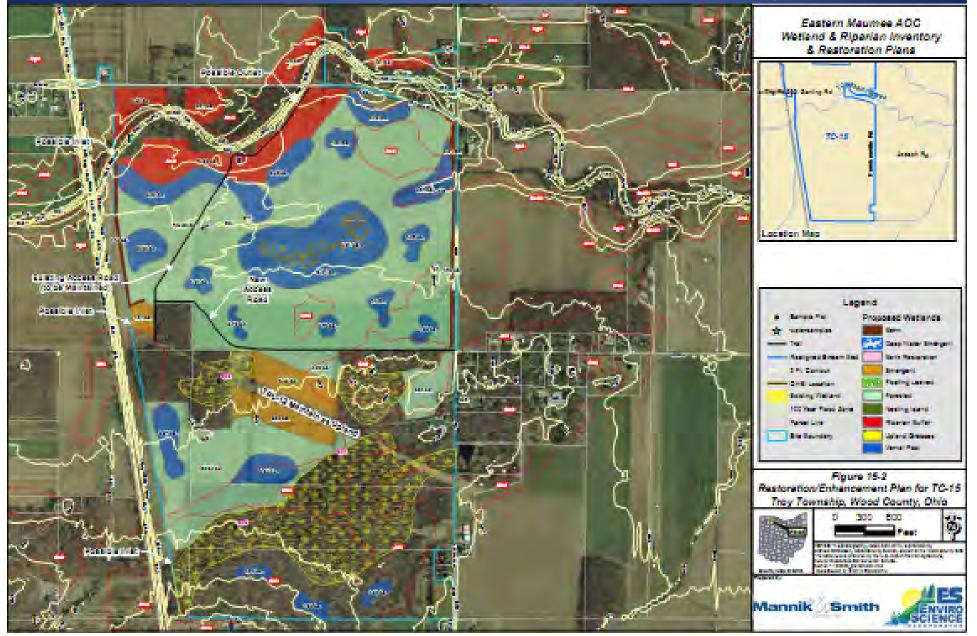
18 Site Specific Plans

- Each Plan includes:
 - Site description and existing site conditions
 - Recommended restoration and enhancement strategy
 - Challenges and Reminders
 - Measurable improvements
 - Preliminary cost estimate

General Concepts


- Restoration and Enhancement of:
 - Historically Channelized Waterways
 - Medium to Large Streams
 - Riparian Areas
 - Non-Coastal Emergent Wetlands
 - Coastal Emergent Wetlands
 - Forested Wetlands

Otter Creek



Toussaint Creek near Luckey

Toussaint Creek near Luckey

Next Steps

- Report will be on RAP webpage in August, 2012
- Available for public use

PARTNERING FOR CLEAN STREAMS

Special Thanks to the Project Team

Kevin Kratt Tetra Tech, Inc. (Project Manager) Cherie Blair Ohio EPA (Project Management Team Leader)

Katie Rousseau	American Rivers & RGI	Joe Uhinck	Ottawa Soil & Water Conservation District
Rob Krain	Black Swamp Conservancy	Kris Patterson	Partners for Clean Streams (PCS)
Andrea Beard	City of Oregon	Kyle Spicer	Partners for Clean Streams (PCS)
Dane Cramer	Ducks Unlimited	Bryan Agosti	The Mannik & Smith Group, Inc.
Roy Kroll	Ducks Unlimited	Keith Carr	The Mannik & Smith Group, Inc.
Tim Walters	EnviroScience, Inc.	James Cole	The Nature Conservancy
Jeff Grabarkiewicz	Lucas SWCD	Steve Woods	The Nature Conservancy
Cheryl Rice	National Resource Conservation Service	Matt Horvat	TMACOG
Mark Witt	ODNR – Magee Marsh Wildlife Area	Tim Schetter	Toledo Area Metroparks
Dana Bollin	ODNR – Maumee Bay State Park	Molly Maguire	Toledo/Lucas County Plan Commission
Ben Smith	Ohio EPA - 401 Wetland Program	David Dean	University of Toledo
Brian Gara	Ohio EPA - Division of Surface Water	Patrick Lawrence	University of Toledo & PCS
Trinka Mount	Ohio EPA - Division of Surface Water	Paul Thomas	US EPA - Division of Water
Eddy Pausch	Ottawa National Wildlife Refuge	Sue Eston	US EPA - Division of Water
Jason Lewis	Ottawa National Wildlife Refuge	Dave Steiner	Wood County Plan Commission
Ron Huffman	Ottawa National Wildlife Refuge	Kelly Hemminger	Wood County Plan Commission
Carol Benner	Ottawa Soil & Water Conservation District	Jim Carter	Wood Soil & Water Conservation District

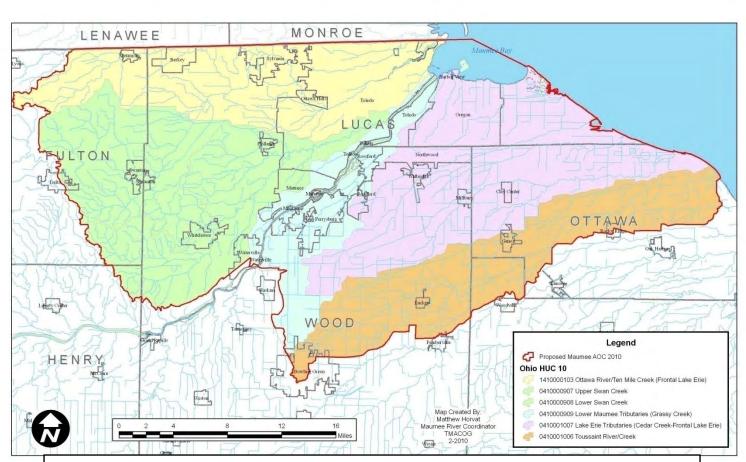
PARTNERS FOR CLEAN STREAMS

2012 PCS BOARD OF DIRECTORS & EXECUTIVE DIRECTOR

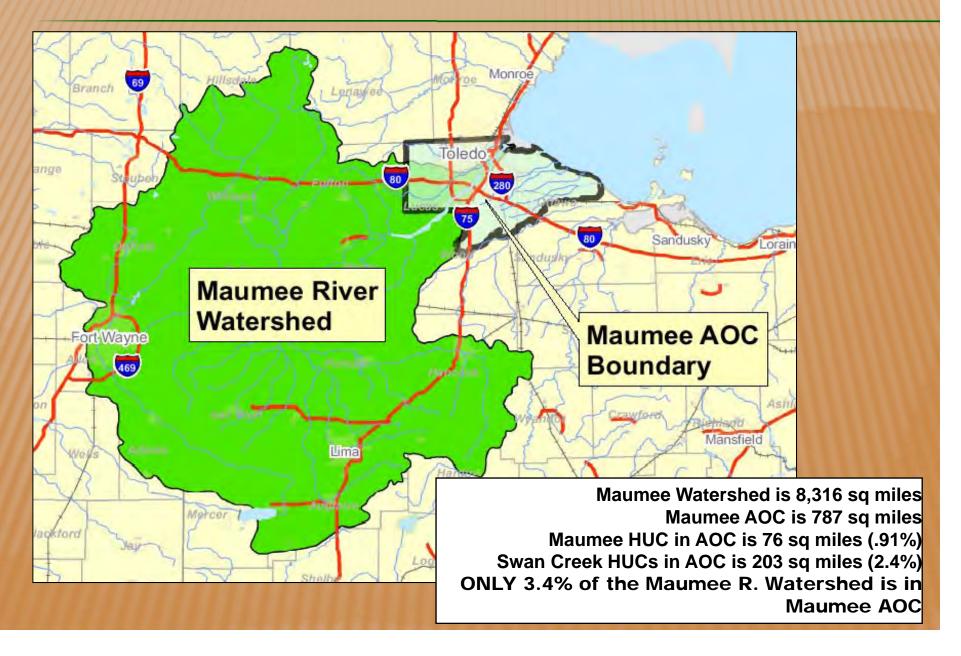
Patrick Lawrence, Ph.D.: President Tim Schetter: VP & Secretary Colleen Dooley: Treasurer Andrew Curran: Board member Shawn Reinhart: Board member Phil Blosser: Board member Terry Shankland: Board member Elliot Tramer: Board member Kristina Patterson: Executive Director

ABOUT THE ORGANIZATION

By Kris Patterson, Executive Director


PCS AND MAUMEE RAP COMMITTEE

- Formed in 2007 grew out of the Maumee RAP Program
- A 501(c)3 non-profit community organization
- Supports local and regional water quality improvements
- Maumee RAP Committee is nestled in PCS organization and works side-by-side with State and Federal RAP program



MAUMEE AREA OF CONCERN VS WATERSHEDS

Boundary was changed to shift from 11/14 HUCs to 10/12 HUCs. Maumee AOC is six 10-digit HUCs totaling 11 independent watersheds. Maumee AOC is 787 sq miles.

MAUMEE WATERSHED VS AREA OF CONCERN

LOCAL INVOLVEMENT - LOTS OF PARTNERS

- Project Planning, development and implementation
- Diversified funding sources (grants, foundations, private donations)
- Legislative updates/support
- Lead for partnership building, planning, and implementation
- Local umbrella for all to collaborate under
- Here's a sample of our partners (list not all inclusive)...

WHAT DO WE DO?

By Kris Patterson, Executive Director

10TH ANNUAL PARTNERING FOR CLEAN STREAMS YOUTH/SCOUT PATCH PROGRAM

Sunday, March 4, 2012

- PCS Workshop
- 81 total participants
- Attendants earned Maumee RAP Patch
- Activities based on land management, conservation, and environmental restoration

Saturday, April 21, 2012

- Global Youth Service Day
 - Over 100 volunteers
 - Over 200 drains stenciled
 - Over 500 educational flyers throughout neighborhoods
- 10 Jurisdictions & Municipalities

8TH ANNUAL GET THE LEAD OUT! CLEAN UP

Mid May to Mid August 2012

- June, July, and August when the water levels are lower
- Multiple Maumee River sites after the fishing runs
- Do-it-yourself kits provided, giving groups flexibility
- Great for adult and youth service organizations

15TH ANNUAL CLEAN YOUR STREAMS DAY

September 17, 2011

- 726 Total Participants
- 50 land sites and 1 boat site cleaned
- 22,840 lbs (18,700 lbs garbage + 276 tires)
- Peculiar Items Found: gun safe, prom dress, koala statue, 18' boat w/motor, pipe organ, 1988 hunting license, antique ringer washing machine, parking tickets (5), Employee of the Month award, 1973 Pepsi can, book bag w/anatomy &

biology books

WHAT ELSE?

- Watershed-planning (Stage 2 Watershed Plan)
- Research (like the Wetland Inventory)
- Secure grants (like the Miakonda grant)
- Collaborate with other environmental partners
- Host workshops and field days
- Fundraising

OTTAWA RIVER WETLAND AND HABITAT RESTORATION PROJECT

at Camp Miakonda

CAMP MIAKONDA AND OTTAWA RIVER RESTORATION

- \$1.36 Million GLRI grant from US EPA
 - 3 year duration Sept 2010-Dec 2013
- Goals of restoration project
 - Restore/enhance approx. 10 acres
 & approx 30 acres associated
 - Reduce erosion & stream bank restoration from 1200' of adjacent Ottawa River
 - Increase in-stream habitat for fish and macro invertebrates

- Increase diversity of in-water habitat for Lake Sawyer, allowing fish to winter over and allowing more active use of Lake Sawyer by Scouts
- Encourage educational use of wetland, lake, river, and upland habitat
- Project contributes to BUI (Beneficial Use Impairment) goals and improvements for BUI 14 - Loss of Fish and Wildlife Habitat & BUI 3 - Degradation of Fish and Wildlife Habitat

OUTCOMES

Ecologically

- Stable stream bank, less sediment in river
- In stream fish habitat
- Maintain connected floodplain
- Diversify habitat
- Increased wildlife use

<u>Camp</u>

- Multi-uses, return active use of Lake, wetland
- Renewed programming
- Signage/Education
- Paths, trails, and access points
- Broaden use/partnership opportunities

MIAKONDA UPDATE

- Received 401/404 permit
- Received updated/corrected plans and specs
- Performed selective tree removal to be sensitive Indiana bat exclusion areas and times
- Updated website with info on Miakonda
- Many presentations to area groups
- Putting consolidated bid request out for stream restoration, lake restoration, habitat management, plantings, and wetland creation
- Construction to occur in Sept/Oct 2012

ANTICIPATED TIMELINE

- Now Sept: Final plan set, permits secured, bid process and award contracts
- August Sept: harvest and re-locate plants
- Early Sept Mid Oct: overall construction period
 - Early Sept: prep site (grub, maybe drain Lake)
 - After Sept. 7: work begins in earnest
 - Mid/Late Sept: stream restoration
 - Sept-Oct: Lake work in phases, overlap with stream
- 2013: Remaining work is follow up for planting, repairing site conditions, monitoring and adaption
- 2016 and beyond- Educational and hands on interaction with the restored areas (Lake, wetlands, trails, signs, etc)

JOB'S CHALLENGE PROGRAM

- NOAA cooperative agreement to implement and oversee "Maumee Corps" in the AOC
- Habitat restoration while putting people to work
- Outcomes: >1000 acres of habitat improved, >15,840 linear feet of streambank improved, and more
- Outcomes: 26 seasonal, part-time, temporary and/or full time positions over the next 18+ months
- PCS will have small team floating from project to project
- Metroparks will have a large dedicated team for their management areas
- Partners: Metroparks, The Nature Conservancy, City of Toledo, UT, and Boy Scouts

CAMP MIAKONDA AND OTTAWA RIVER RESTORATION

Rubble piles between River & Lake Sawyer

Enhance wetlands

Address severe stream bank erosion

CONTACT US

- PCS Staff
- 419.874.0727 office
- Executive.Director@PartnersForCleanStreams.org
- www.PartnersForCleanStreams.org
- Like us on Facebook to stay up-to-date
- Check out our new 2011 Annual Report
- Donate online to support our activities

Working towards fishable, swimmable, and drinkable waters for all the people (and wildlife) that live, work, and play in Northwest Ohio.